Sensing the impact of COVID-19 restrictions from online reviews: The cases of London and Paris unveiled through text mining

Detalhes bibliográficos
Autor(a) principal: Silva, Bruno Rafael Martins da
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/23879
Resumo: This study aims to understand how the COVID-19 pandemic affected the hotel sector and to identify the current traveler demands. The traveler’s reviews were analyzed based on a sentiment and guest satisfaction analysis, demonstrating a data mining approach within tourism and hospitality research. Given its popularity, TripAdvisor was the chosen platform for collection of hotel reviews in London and Paris. The data collection consisted in a dataset of 8k reviews from 226 hotels in total. Text data were extracted from reviews made in two time periods, before and during the COVID-19 pandemic. The sentiment and specific aspects highlighted by travelers were compared between each period. This analysis may also serve as a basis for other studies aimed at a better understanding of the behavior of hotel guests during the COVID-19 pandemic.
id RCAP_6e6e6276b749a9bc1b16dbd8302764ac
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/23879
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Sensing the impact of COVID-19 restrictions from online reviews: The cases of London and Paris unveiled through text miningText miningSentiment analysisTourismHotel traveller’s online reviewsCOVID-19Análise de sentimentoTurismoAnálises online de hotéis de viajantesThis study aims to understand how the COVID-19 pandemic affected the hotel sector and to identify the current traveler demands. The traveler’s reviews were analyzed based on a sentiment and guest satisfaction analysis, demonstrating a data mining approach within tourism and hospitality research. Given its popularity, TripAdvisor was the chosen platform for collection of hotel reviews in London and Paris. The data collection consisted in a dataset of 8k reviews from 226 hotels in total. Text data were extracted from reviews made in two time periods, before and during the COVID-19 pandemic. The sentiment and specific aspects highlighted by travelers were compared between each period. This analysis may also serve as a basis for other studies aimed at a better understanding of the behavior of hotel guests during the COVID-19 pandemic.Este estudo tem como objetivo compreender como a pandemia COVID-19 afetou o setor hoteleiro e identificar as exigências atuais dos hóspedes. As avaliações destes foram analisadas com base na análise de sentimento tendo sido usado para o efeito o website TripAdvisor, um dos sites mais populares na área do turismo, para a coleta de avaliações de hotéis em Londres e Paris. A coleta consistiu num dataset de 8k avaliações correspondentes a 226 hotéis. Os dados, em formato de texto, foram extraídos das revisões feitas em dois períodos homólogos, antes e durante a pandemia de COVID-19, para comparar o sentimento e os aspetos específicos destacados pelos hóspedes, entre cada período. A análise efetuada poderá igualmente servir como base para outros estudos que visem uma melhor compreensão do comportamento dos hóspedes na fase da pandemia de COVID-19.2022-01-03T14:24:33Z2021-12-03T00:00:00Z2021-12-032021-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/23879TID:202828891engSilva, Bruno Rafael Martins dainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T18:01:02Zoai:repositorio.iscte-iul.pt:10071/23879Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:32:31.012323Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Sensing the impact of COVID-19 restrictions from online reviews: The cases of London and Paris unveiled through text mining
title Sensing the impact of COVID-19 restrictions from online reviews: The cases of London and Paris unveiled through text mining
spellingShingle Sensing the impact of COVID-19 restrictions from online reviews: The cases of London and Paris unveiled through text mining
Silva, Bruno Rafael Martins da
Text mining
Sentiment analysis
Tourism
Hotel traveller’s online reviews
COVID-19
Análise de sentimento
Turismo
Análises online de hotéis de viajantes
title_short Sensing the impact of COVID-19 restrictions from online reviews: The cases of London and Paris unveiled through text mining
title_full Sensing the impact of COVID-19 restrictions from online reviews: The cases of London and Paris unveiled through text mining
title_fullStr Sensing the impact of COVID-19 restrictions from online reviews: The cases of London and Paris unveiled through text mining
title_full_unstemmed Sensing the impact of COVID-19 restrictions from online reviews: The cases of London and Paris unveiled through text mining
title_sort Sensing the impact of COVID-19 restrictions from online reviews: The cases of London and Paris unveiled through text mining
author Silva, Bruno Rafael Martins da
author_facet Silva, Bruno Rafael Martins da
author_role author
dc.contributor.author.fl_str_mv Silva, Bruno Rafael Martins da
dc.subject.por.fl_str_mv Text mining
Sentiment analysis
Tourism
Hotel traveller’s online reviews
COVID-19
Análise de sentimento
Turismo
Análises online de hotéis de viajantes
topic Text mining
Sentiment analysis
Tourism
Hotel traveller’s online reviews
COVID-19
Análise de sentimento
Turismo
Análises online de hotéis de viajantes
description This study aims to understand how the COVID-19 pandemic affected the hotel sector and to identify the current traveler demands. The traveler’s reviews were analyzed based on a sentiment and guest satisfaction analysis, demonstrating a data mining approach within tourism and hospitality research. Given its popularity, TripAdvisor was the chosen platform for collection of hotel reviews in London and Paris. The data collection consisted in a dataset of 8k reviews from 226 hotels in total. Text data were extracted from reviews made in two time periods, before and during the COVID-19 pandemic. The sentiment and specific aspects highlighted by travelers were compared between each period. This analysis may also serve as a basis for other studies aimed at a better understanding of the behavior of hotel guests during the COVID-19 pandemic.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-03T00:00:00Z
2021-12-03
2021-12
2022-01-03T14:24:33Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/23879
TID:202828891
url http://hdl.handle.net/10071/23879
identifier_str_mv TID:202828891
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134886846529536