TSFEL: Time Series Feature Extraction Library
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/117283 |
Resumo: | POCI-01-0247-FEDER-038436 |
id |
RCAP_6e939da35249c573ab7858c32280898b |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/117283 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
TSFEL: Time Series Feature Extraction LibraryFeature extractionMachine learningPythonTime seriesSoftwareComputer Science ApplicationsPOCI-01-0247-FEDER-038436Time series feature extraction is one of the preliminary steps of conventional machine learning pipelines. Quite often, this process ends being a time consuming and complex task as data scientists must consider a combination between a multitude of domain knowledge factors and coding implementation. We present in this paper a Python package entitled Time Series Feature Extraction Library (TSFEL), which computes over 60 different features extracted across temporal, statistical and spectral domains. User customisation is achieved using either an online interface or a conventional Python package for more flexibility and integration into real deployment scenarios. TSFEL is designed to support the process of fast exploratory data analysis and feature extraction on time series with computational cost evaluation.DF – Departamento de FísicaLIBPhys-UNLRUNBarandas, MaríliaFolgado, DuarteFernandes, LetíciaSantos, SaraAbreu, MarianaBota, PatríciaLiu, HuiSchultz, TanjaGamboa, Hugo2021-05-06T22:45:29Z2020-01-012020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/117283engPURE: 29589862https://doi.org/10.1016/j.softx.2020.100456info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:53:07Zoai:run.unl.pt:10362/117283Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:53:07Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
TSFEL: Time Series Feature Extraction Library |
title |
TSFEL: Time Series Feature Extraction Library |
spellingShingle |
TSFEL: Time Series Feature Extraction Library Barandas, Marília Feature extraction Machine learning Python Time series Software Computer Science Applications |
title_short |
TSFEL: Time Series Feature Extraction Library |
title_full |
TSFEL: Time Series Feature Extraction Library |
title_fullStr |
TSFEL: Time Series Feature Extraction Library |
title_full_unstemmed |
TSFEL: Time Series Feature Extraction Library |
title_sort |
TSFEL: Time Series Feature Extraction Library |
author |
Barandas, Marília |
author_facet |
Barandas, Marília Folgado, Duarte Fernandes, Letícia Santos, Sara Abreu, Mariana Bota, Patrícia Liu, Hui Schultz, Tanja Gamboa, Hugo |
author_role |
author |
author2 |
Folgado, Duarte Fernandes, Letícia Santos, Sara Abreu, Mariana Bota, Patrícia Liu, Hui Schultz, Tanja Gamboa, Hugo |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
DF – Departamento de Física LIBPhys-UNL RUN |
dc.contributor.author.fl_str_mv |
Barandas, Marília Folgado, Duarte Fernandes, Letícia Santos, Sara Abreu, Mariana Bota, Patrícia Liu, Hui Schultz, Tanja Gamboa, Hugo |
dc.subject.por.fl_str_mv |
Feature extraction Machine learning Python Time series Software Computer Science Applications |
topic |
Feature extraction Machine learning Python Time series Software Computer Science Applications |
description |
POCI-01-0247-FEDER-038436 |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 2020-01-01T00:00:00Z 2021-05-06T22:45:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/117283 |
url |
http://hdl.handle.net/10362/117283 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
PURE: 29589862 https://doi.org/10.1016/j.softx.2020.100456 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545799577370624 |