Hydrodynamic analysis of different finger positions in swimming: a computational fluid dynamics approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/9302 |
Resumo: | The aim of this research was to numerically clarify the effect of finger spreading and thumb abduction on the hydrodynamic force generated by the hand and forearm during swimming. A computational fluid dynamics (CFD) analysis of a realistic hand and forearm model obtained using a computer tomography scanner was conducted. A mean flow speed of 2 m · s(-1) was used to analyze the possible combinations of three finger positions (grouped, partially spread, totally spread), three thumb positions (adducted, partially abducted, totally abducted), three angles of attack (a = 0°, 45°, 90°), and four sweepback angles (y = 0°, 90°, 180°, 270°) to yield a total of 108 simulated situations. The values of the drag coefficient were observed to increase with the angle of attack for all sweepback angles and finger and thumb positions. For y = 0° and 180°, the model with the thumb adducted and with the little finger spread presented higher drag coefficient values for a = 45° and 90°. Lift coefficient values were observed to be very low at a = 0° and 90° for all of the sweepback angles and finger and thumb positions studied, although very similar values are obtained at a = 45°. For y = 0° and 180°, the effect of finger and thumb positions appears to be much most distinct, indicating that having the thumb slightly abducted and the fingers grouped is a preferable position at y = 180°, whereas at y = 0°, having the thumb adducted and fingers slightly spread yielded higher lift values. Results show that finger and thumb positioning in swimming is a determinant of the propulsive force produced during swimming; indeed, this force is dependent on the direction of the flow over the hand and forearm, which changes across the arm's stroke. |
id |
RCAP_6ea9d1bf0c60cb21e0dfa62f6099a0fb |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/9302 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Hydrodynamic analysis of different finger positions in swimming: a computational fluid dynamics approachAdultAthletic PerformanceFingersForearmHumansHydrodynamicsModels BiologicalSwimmingThumbThe aim of this research was to numerically clarify the effect of finger spreading and thumb abduction on the hydrodynamic force generated by the hand and forearm during swimming. A computational fluid dynamics (CFD) analysis of a realistic hand and forearm model obtained using a computer tomography scanner was conducted. A mean flow speed of 2 m · s(-1) was used to analyze the possible combinations of three finger positions (grouped, partially spread, totally spread), three thumb positions (adducted, partially abducted, totally abducted), three angles of attack (a = 0°, 45°, 90°), and four sweepback angles (y = 0°, 90°, 180°, 270°) to yield a total of 108 simulated situations. The values of the drag coefficient were observed to increase with the angle of attack for all sweepback angles and finger and thumb positions. For y = 0° and 180°, the model with the thumb adducted and with the little finger spread presented higher drag coefficient values for a = 45° and 90°. Lift coefficient values were observed to be very low at a = 0° and 90° for all of the sweepback angles and finger and thumb positions studied, although very similar values are obtained at a = 45°. For y = 0° and 180°, the effect of finger and thumb positions appears to be much most distinct, indicating that having the thumb slightly abducted and the fingers grouped is a preferable position at y = 180°, whereas at y = 0°, having the thumb adducted and fingers slightly spread yielded higher lift values. Results show that finger and thumb positioning in swimming is a determinant of the propulsive force produced during swimming; indeed, this force is dependent on the direction of the flow over the hand and forearm, which changes across the arm's stroke.uBibliorumVilas Boas, J. PauloRamos, Rui J.Fernandes, Ricardo J.Silva, AntónioRouboa, Abel IMachado, LeandroBarbosa, Tiago M.Marinho, Daniel2020-02-18T11:25:25Z2015-022015-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/9302eng10.1123/jab.2013-0296info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-27T12:31:25Zoai:ubibliorum.ubi.pt:10400.6/9302Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-27T12:31:25Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Hydrodynamic analysis of different finger positions in swimming: a computational fluid dynamics approach |
title |
Hydrodynamic analysis of different finger positions in swimming: a computational fluid dynamics approach |
spellingShingle |
Hydrodynamic analysis of different finger positions in swimming: a computational fluid dynamics approach Vilas Boas, J. Paulo Adult Athletic Performance Fingers Forearm Humans Hydrodynamics Models Biological Swimming Thumb |
title_short |
Hydrodynamic analysis of different finger positions in swimming: a computational fluid dynamics approach |
title_full |
Hydrodynamic analysis of different finger positions in swimming: a computational fluid dynamics approach |
title_fullStr |
Hydrodynamic analysis of different finger positions in swimming: a computational fluid dynamics approach |
title_full_unstemmed |
Hydrodynamic analysis of different finger positions in swimming: a computational fluid dynamics approach |
title_sort |
Hydrodynamic analysis of different finger positions in swimming: a computational fluid dynamics approach |
author |
Vilas Boas, J. Paulo |
author_facet |
Vilas Boas, J. Paulo Ramos, Rui J. Fernandes, Ricardo J. Silva, António Rouboa, Abel I Machado, Leandro Barbosa, Tiago M. Marinho, Daniel |
author_role |
author |
author2 |
Ramos, Rui J. Fernandes, Ricardo J. Silva, António Rouboa, Abel I Machado, Leandro Barbosa, Tiago M. Marinho, Daniel |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
uBibliorum |
dc.contributor.author.fl_str_mv |
Vilas Boas, J. Paulo Ramos, Rui J. Fernandes, Ricardo J. Silva, António Rouboa, Abel I Machado, Leandro Barbosa, Tiago M. Marinho, Daniel |
dc.subject.por.fl_str_mv |
Adult Athletic Performance Fingers Forearm Humans Hydrodynamics Models Biological Swimming Thumb |
topic |
Adult Athletic Performance Fingers Forearm Humans Hydrodynamics Models Biological Swimming Thumb |
description |
The aim of this research was to numerically clarify the effect of finger spreading and thumb abduction on the hydrodynamic force generated by the hand and forearm during swimming. A computational fluid dynamics (CFD) analysis of a realistic hand and forearm model obtained using a computer tomography scanner was conducted. A mean flow speed of 2 m · s(-1) was used to analyze the possible combinations of three finger positions (grouped, partially spread, totally spread), three thumb positions (adducted, partially abducted, totally abducted), three angles of attack (a = 0°, 45°, 90°), and four sweepback angles (y = 0°, 90°, 180°, 270°) to yield a total of 108 simulated situations. The values of the drag coefficient were observed to increase with the angle of attack for all sweepback angles and finger and thumb positions. For y = 0° and 180°, the model with the thumb adducted and with the little finger spread presented higher drag coefficient values for a = 45° and 90°. Lift coefficient values were observed to be very low at a = 0° and 90° for all of the sweepback angles and finger and thumb positions studied, although very similar values are obtained at a = 45°. For y = 0° and 180°, the effect of finger and thumb positions appears to be much most distinct, indicating that having the thumb slightly abducted and the fingers grouped is a preferable position at y = 180°, whereas at y = 0°, having the thumb adducted and fingers slightly spread yielded higher lift values. Results show that finger and thumb positioning in swimming is a determinant of the propulsive force produced during swimming; indeed, this force is dependent on the direction of the flow over the hand and forearm, which changes across the arm's stroke. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-02 2015-02-01T00:00:00Z 2020-02-18T11:25:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/9302 |
url |
http://hdl.handle.net/10400.6/9302 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1123/jab.2013-0296 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817549641181298688 |