Arbitrary bi-dimensional finite strain crack propagation

Detalhes bibliográficos
Autor(a) principal: Areias, P.
Data de Publicação: 2009
Outros Autores: D. Dias-da-Costa, P, Alfaiate, J., Júlio, E.
Tipo de documento: Artigo de conferência
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/6668
Resumo: In the past two decades numerous numerical procedures for crack propagation have been developed. Lately, enrichment methods (either local, such as SDA or global, such as XFEM) have been applied with success to simple problems, typically involving some intersections. For arbitrary finite strain propagation, numerous difficulties are encountered: modeling of intersection and coalescence, step size dependence and the presence of distorted finite elements. In order to overcome these difficulties, an approach fully capable of dealing with multiple advancing cracks and self-contact is presented (see Fig.1). This approach makes use of a coupled Arbitrary Lagrangian-Eulerian method (ALE) and local tip remeshing. This is substantially less costly than a full remeshing while retaining its full versatility. Compared to full remeshing, angle measures and crack paths are superior. A consistent continuationbased linear control is used to force the critical tip to be exactly critical, while moving around the candidate set. The critical crack front is identified and propagated when one of the following criteria reaches a material limiting value: (i) the stress intensity factor; or (ii) the element-ahead tip stress. These are the control equations. The ability to solve crack intersection and coalescence problems is shown. Additionally, the independence from crack tip and step size and the absence of blade and dagger-shaped finite elements is observed. Classic benchmarks are computed leading to excellent crack path and load-deflection results, where convergence rate is quadratic.
id RCAP_6fd1091e6384b6c52b65a6487c58a60d
oai_identifier_str oai:dspace.uevora.pt:10174/6668
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Arbitrary bi-dimensional finite strain crack propagationIn the past two decades numerous numerical procedures for crack propagation have been developed. Lately, enrichment methods (either local, such as SDA or global, such as XFEM) have been applied with success to simple problems, typically involving some intersections. For arbitrary finite strain propagation, numerous difficulties are encountered: modeling of intersection and coalescence, step size dependence and the presence of distorted finite elements. In order to overcome these difficulties, an approach fully capable of dealing with multiple advancing cracks and self-contact is presented (see Fig.1). This approach makes use of a coupled Arbitrary Lagrangian-Eulerian method (ALE) and local tip remeshing. This is substantially less costly than a full remeshing while retaining its full versatility. Compared to full remeshing, angle measures and crack paths are superior. A consistent continuationbased linear control is used to force the critical tip to be exactly critical, while moving around the candidate set. The critical crack front is identified and propagated when one of the following criteria reaches a material limiting value: (i) the stress intensity factor; or (ii) the element-ahead tip stress. These are the control equations. The ability to solve crack intersection and coalescence problems is shown. Additionally, the independence from crack tip and step size and the absence of blade and dagger-shaped finite elements is observed. Classic benchmarks are computed leading to excellent crack path and load-deflection results, where convergence rate is quadratic.2012-12-07T16:57:52Z2012-12-072009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://hdl.handle.net/10174/6668http://hdl.handle.net/10174/6668porsimsimnaopmaa@uevora.ptndndndAreias, P.D. Dias-da-Costa, PAlfaiate, J.Júlio, E.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:46:18Zoai:dspace.uevora.pt:10174/6668Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:01:24.920505Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Arbitrary bi-dimensional finite strain crack propagation
title Arbitrary bi-dimensional finite strain crack propagation
spellingShingle Arbitrary bi-dimensional finite strain crack propagation
Areias, P.
title_short Arbitrary bi-dimensional finite strain crack propagation
title_full Arbitrary bi-dimensional finite strain crack propagation
title_fullStr Arbitrary bi-dimensional finite strain crack propagation
title_full_unstemmed Arbitrary bi-dimensional finite strain crack propagation
title_sort Arbitrary bi-dimensional finite strain crack propagation
author Areias, P.
author_facet Areias, P.
D. Dias-da-Costa, P
Alfaiate, J.
Júlio, E.
author_role author
author2 D. Dias-da-Costa, P
Alfaiate, J.
Júlio, E.
author2_role author
author
author
dc.contributor.author.fl_str_mv Areias, P.
D. Dias-da-Costa, P
Alfaiate, J.
Júlio, E.
description In the past two decades numerous numerical procedures for crack propagation have been developed. Lately, enrichment methods (either local, such as SDA or global, such as XFEM) have been applied with success to simple problems, typically involving some intersections. For arbitrary finite strain propagation, numerous difficulties are encountered: modeling of intersection and coalescence, step size dependence and the presence of distorted finite elements. In order to overcome these difficulties, an approach fully capable of dealing with multiple advancing cracks and self-contact is presented (see Fig.1). This approach makes use of a coupled Arbitrary Lagrangian-Eulerian method (ALE) and local tip remeshing. This is substantially less costly than a full remeshing while retaining its full versatility. Compared to full remeshing, angle measures and crack paths are superior. A consistent continuationbased linear control is used to force the critical tip to be exactly critical, while moving around the candidate set. The critical crack front is identified and propagated when one of the following criteria reaches a material limiting value: (i) the stress intensity factor; or (ii) the element-ahead tip stress. These are the control equations. The ability to solve crack intersection and coalescence problems is shown. Additionally, the independence from crack tip and step size and the absence of blade and dagger-shaped finite elements is observed. Classic benchmarks are computed leading to excellent crack path and load-deflection results, where convergence rate is quadratic.
publishDate 2009
dc.date.none.fl_str_mv 2009-01-01T00:00:00Z
2012-12-07T16:57:52Z
2012-12-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/6668
http://hdl.handle.net/10174/6668
url http://hdl.handle.net/10174/6668
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv sim
sim
nao
pmaa@uevora.pt
nd
nd
nd
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136497394253824