Delimitation of flooded areas based on Sentinel-1 SAR data processed through machine learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.18055/Finis30884 |
Resumo: | Delimitation of areas subject to flooding is crucial to understand water dynamics and fluvial changes. This study analyzed the potential of C-band Synthetic Aperture Radar (SAR) images acquired by the Sentinel-1 satellite in 2017, 2018, and 2019 to delineate flooded areas in the Central Amazon. The images were processed by the Artificial Neural Network Multi-Layer Perceptron (ANN-MLP) and two K-Nearest Neighbor (KNN-7 and KNN-11) machine learning (ML) classifiers. Pre-processing of Single Look Complex (SLC) SAR images involved the following methodological steps: orbit-file application; radiometric calibration (σ0); Range-Doppler terrain correction; speckle noise filtering; and conversion of linear data to backscattering coefficients (units in dB). We applied the Lee filter, with a window size of 3x3, for speckle filtering. A set of 6000 randomly distributed samples for training (70%), validation (20%), and test (10%) was obtained based on visual interpretation of Sentinel-2 optical satellite image acquired in the same years of SAR images. We found the largest flooded areas in 2019 in the study area (municipality of Parintins and Urucará, Amazonas River, Brazil): 6244km2 by the ANN-MLP classifier; 6268km2 by KNN- 7; and 6290km2 by KNN-11, while the smallest flooded areas were found in 2018: 5364km2 by ANN-MLP; 5412km2 by KNN-7; and 5535km2 by KNN-11. The three classifiers presented Kappa coefficients between 0.77 and 0.91. ANN-MLP showed the best accuracy. The presence of shadow effects in the SAR images increased the commission errors. |
id |
RCAP_7055c7fd7627a93a848797d3aa05cf6f |
---|---|
oai_identifier_str |
oai:ojs.revistas.rcaap.pt:article/30884 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Delimitation of flooded areas based on Sentinel-1 SAR data processed through machine learningDelimitación de áreas inundadas basada en datos SAR Sentinel-1 procesados mediante aprendizaje automáticoDelimitação de áreas inundadas com base em dados SAR Sentinel-1 processados através de aprendizagem de máquinaArtigosDelimitation of areas subject to flooding is crucial to understand water dynamics and fluvial changes. This study analyzed the potential of C-band Synthetic Aperture Radar (SAR) images acquired by the Sentinel-1 satellite in 2017, 2018, and 2019 to delineate flooded areas in the Central Amazon. The images were processed by the Artificial Neural Network Multi-Layer Perceptron (ANN-MLP) and two K-Nearest Neighbor (KNN-7 and KNN-11) machine learning (ML) classifiers. Pre-processing of Single Look Complex (SLC) SAR images involved the following methodological steps: orbit-file application; radiometric calibration (σ0); Range-Doppler terrain correction; speckle noise filtering; and conversion of linear data to backscattering coefficients (units in dB). We applied the Lee filter, with a window size of 3x3, for speckle filtering. A set of 6000 randomly distributed samples for training (70%), validation (20%), and test (10%) was obtained based on visual interpretation of Sentinel-2 optical satellite image acquired in the same years of SAR images. We found the largest flooded areas in 2019 in the study area (municipality of Parintins and Urucará, Amazonas River, Brazil): 6244km2 by the ANN-MLP classifier; 6268km2 by KNN- 7; and 6290km2 by KNN-11, while the smallest flooded areas were found in 2018: 5364km2 by ANN-MLP; 5412km2 by KNN-7; and 5535km2 by KNN-11. The three classifiers presented Kappa coefficients between 0.77 and 0.91. ANN-MLP showed the best accuracy. The presence of shadow effects in the SAR images increased the commission errors.La delimitación de áreas sujetas a inundaciones es crucial para comprender la dinámica del agua y los cambios fluviales. Este estudio analizó el potencial de las imágenes de radar de apertura sintética (SAR) adquiridas en la banda-C por el satélite Sentinel-1 en 2017, 2018 y 2019 para delinear áreas inundadas en la Amazonía Central. Las imágenes fueron procesadas por la Red Neuronal Artificial de Perceptrón Multicapa (RNA-MLP) y dos clasificadores de aprendizaje automático (ML) K-Nearest Neighbor (KNN-7 y KNN-11). El preprocesamiento de imágenes SAR complejas de una sola mirada (SLC) involucró los siguientes pasos metodológicos: aplicación del archivo de órbita; calibración radiométrica (σ0); corrección del terreno Range-Doppler; filtrado de ruido moteado; y conversión de datos lineales en coeficientes de retrodispersión (unidades en dB). Se aplicó El filtro Lee con un tamaño de ventana de 3×3 para filtrar el ruido moteado. Se obtuvo un conjunto de 6000 muestras asignadas aleatoriamente para entrenamiento (70%), validación (20%) y prueba (10%) en base a la interpretación visual de la imagen del satélite óptico Sentinel-2 adquirida el mismo año que las imágenes de radar. Los humedales más grandes se encontraron en 2019 en el área de estudio (municipio de Parintins y Urucará, Rió Amazonas, Brasil): 6244km2 por el clasificador RNA-MLP; 6268km2 por KNN-7; y, 6290km2 por KNN-11, mientras que, los humedales más pequeños se encontraron en 2018: 5364km2 por el clasificador RNA-MLP; 5412km2 por KNN-7; y 5535km2 por KNN-11. Los tres clasificadores presentaron coeficientes Kappa entre 0,77 y 0,91. RNA- -MLP mostró la mejor precisión. La presencia de efectos de sombra en las imágenes SAR aumentó los errores de comisión.A delimitação de áreas sujeitas a inundações é crucial para entender a dinâmica hídrica e as mudanças fluviais. Este estudo analisou o potencial de imagens de radar de abertura sintética (SAR) adquiridas na banda-C pelo satélite Sentinel-1 em 2017, 2018 e 2019 para delinear áreas inundadas na Amazónia Central. As imagens foram processadas pela Rede Neural Artificial Multi-Layer Perceptron (RNA-MLP) e dois classificadores de aprendizagem de máquina (ML) K-Nearest Neighbor (KNN-7 e KNN-11). O pré-processamento de imagens SAR Single Look Complex (SLC) envolveu as seguintes etapas metodológicas: aplicação do orbit-file; calibração radiométrica (σ0); correção de terreno Range-Doppler; filtragem de ruído speckle; e conversão de dados lineares para coeficientes de retroespalhamento (unidades em dB). O filtro de Lee com tamanho de janela de 3×3 foi aplicado para filtragem do ruído speckle. Um conjunto de 6000 amostras distribuídas aleatoriamente para treino (70%), validação (20%) e teste (10%) foi obtido com base na interpretação visual da imagem do satélite óptico Sentinel-2 adquiridas no mesmo ano das imagens de radar. As maiores áreas alagadas foram encontradas em 2019 na área de estudo (municípios de Parintins e Urucará, Rio Amazonas, Brasil): 6244km2 pelo classificador RNA-MLP; 6268km2 pelo KNN-7; e 6290km2 pelo KNN-11, enquanto as menores áreas alagadas foram encontradas em 2018: 5364km2 pelo classificador RNA-MLP; 5412km2 pelo KNN-7; e 5535km2 pelo KNN-11. Os três classificadores apresentaram coeficientes Kappa entre 0,77 e 0,91. A RNA-MLP apresentou a melhor precisão. A presença de efeitos de sombra nas imagens SAR aumentou os erros de comissão.Centro de Estudos Geográficos2023-08-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://doi.org/10.18055/Finis30884eng2182-29050430-5027, Ivo Augusto Lopes Magalhãesde Carvalho Junior, Osmar AbilioEyji Sano, Edsoninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-19T08:28:52Zoai:ojs.revistas.rcaap.pt:article/30884Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:27:05.431328Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Delimitation of flooded areas based on Sentinel-1 SAR data processed through machine learning Delimitación de áreas inundadas basada en datos SAR Sentinel-1 procesados mediante aprendizaje automático Delimitação de áreas inundadas com base em dados SAR Sentinel-1 processados através de aprendizagem de máquina |
title |
Delimitation of flooded areas based on Sentinel-1 SAR data processed through machine learning |
spellingShingle |
Delimitation of flooded areas based on Sentinel-1 SAR data processed through machine learning , Ivo Augusto Lopes Magalhães Artigos |
title_short |
Delimitation of flooded areas based on Sentinel-1 SAR data processed through machine learning |
title_full |
Delimitation of flooded areas based on Sentinel-1 SAR data processed through machine learning |
title_fullStr |
Delimitation of flooded areas based on Sentinel-1 SAR data processed through machine learning |
title_full_unstemmed |
Delimitation of flooded areas based on Sentinel-1 SAR data processed through machine learning |
title_sort |
Delimitation of flooded areas based on Sentinel-1 SAR data processed through machine learning |
author |
, Ivo Augusto Lopes Magalhães |
author_facet |
, Ivo Augusto Lopes Magalhães de Carvalho Junior, Osmar Abilio Eyji Sano, Edson |
author_role |
author |
author2 |
de Carvalho Junior, Osmar Abilio Eyji Sano, Edson |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
, Ivo Augusto Lopes Magalhães de Carvalho Junior, Osmar Abilio Eyji Sano, Edson |
dc.subject.por.fl_str_mv |
Artigos |
topic |
Artigos |
description |
Delimitation of areas subject to flooding is crucial to understand water dynamics and fluvial changes. This study analyzed the potential of C-band Synthetic Aperture Radar (SAR) images acquired by the Sentinel-1 satellite in 2017, 2018, and 2019 to delineate flooded areas in the Central Amazon. The images were processed by the Artificial Neural Network Multi-Layer Perceptron (ANN-MLP) and two K-Nearest Neighbor (KNN-7 and KNN-11) machine learning (ML) classifiers. Pre-processing of Single Look Complex (SLC) SAR images involved the following methodological steps: orbit-file application; radiometric calibration (σ0); Range-Doppler terrain correction; speckle noise filtering; and conversion of linear data to backscattering coefficients (units in dB). We applied the Lee filter, with a window size of 3x3, for speckle filtering. A set of 6000 randomly distributed samples for training (70%), validation (20%), and test (10%) was obtained based on visual interpretation of Sentinel-2 optical satellite image acquired in the same years of SAR images. We found the largest flooded areas in 2019 in the study area (municipality of Parintins and Urucará, Amazonas River, Brazil): 6244km2 by the ANN-MLP classifier; 6268km2 by KNN- 7; and 6290km2 by KNN-11, while the smallest flooded areas were found in 2018: 5364km2 by ANN-MLP; 5412km2 by KNN-7; and 5535km2 by KNN-11. The three classifiers presented Kappa coefficients between 0.77 and 0.91. ANN-MLP showed the best accuracy. The presence of shadow effects in the SAR images increased the commission errors. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.18055/Finis30884 |
url |
https://doi.org/10.18055/Finis30884 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2182-2905 0430-5027 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Centro de Estudos Geográficos |
publisher.none.fl_str_mv |
Centro de Estudos Geográficos |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133539433709568 |