Harnessing the bioactive potential of Limonium spathulatum (Desf.) kuntze: insights into enzyme inhibition and phytochemical profile
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10198/28967 |
Resumo: | This study assessed the halophyte species Limonium spathulatum (Desf.) as a possible source of natural ingredients with the capacity to inhibit enzymes related to relevant human health disorders and food browning. Extracts using food-grade solvents such as water and ethanol were prepared by maceration from dried L. spathulatum leaves. They were evaluated for in vitro inhibition activity of enzymes such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), -glucosidase, tyrosinase and lipase, related to Alzheimer’s disease, type-2-diabetes mellitus, skin hyperpigmentation, and obesity, respectively. These extracts were also appraised for in vitro acute toxicity on tumoral and non-tumoral cell lines and their chemical composition by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS/MS). The extracts were more effective towards BChE than AChE. The best results were obtained with the hydroethanolic and water extracts, with IC50 values of 0.03 mg/mL and 0.06 mg/mL, respectively. The hydroethanolic extract had the highest capacity to inhibit -glucosidase (IC50: 0.04 mg/mL), higher than the positive control used (acarbose, IC50 = 3.14 mg/mL). The ethanol extract displayed the best inhibitory activity against tyrosinase (IC50 = 0.34 mg/mL). The tested samples did not inhibit lipase and exhibited low to moderate cytotoxic activity against the tested cell lines. The hydroethanolic extract had a higher diversity of compounds, followed by the ethanol and water samples. Similar molecules were identified in all the extracts and were mainly hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids. Taken together, these results suggest that L. spathulatum should be further explored as a source of bioactive ingredients for the food, cosmetic, and pharmaceutical industries. |
id |
RCAP_707b77949dfbdf9e87463aa6691466be |
---|---|
oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/28967 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Harnessing the bioactive potential of Limonium spathulatum (Desf.) kuntze: insights into enzyme inhibition and phytochemical profileSea lavenderEnzyme inhibitorsPhenolic compoundsCytotoxicityThis study assessed the halophyte species Limonium spathulatum (Desf.) as a possible source of natural ingredients with the capacity to inhibit enzymes related to relevant human health disorders and food browning. Extracts using food-grade solvents such as water and ethanol were prepared by maceration from dried L. spathulatum leaves. They were evaluated for in vitro inhibition activity of enzymes such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), -glucosidase, tyrosinase and lipase, related to Alzheimer’s disease, type-2-diabetes mellitus, skin hyperpigmentation, and obesity, respectively. These extracts were also appraised for in vitro acute toxicity on tumoral and non-tumoral cell lines and their chemical composition by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS/MS). The extracts were more effective towards BChE than AChE. The best results were obtained with the hydroethanolic and water extracts, with IC50 values of 0.03 mg/mL and 0.06 mg/mL, respectively. The hydroethanolic extract had the highest capacity to inhibit -glucosidase (IC50: 0.04 mg/mL), higher than the positive control used (acarbose, IC50 = 3.14 mg/mL). The ethanol extract displayed the best inhibitory activity against tyrosinase (IC50 = 0.34 mg/mL). The tested samples did not inhibit lipase and exhibited low to moderate cytotoxic activity against the tested cell lines. The hydroethanolic extract had a higher diversity of compounds, followed by the ethanol and water samples. Similar molecules were identified in all the extracts and were mainly hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids. Taken together, these results suggest that L. spathulatum should be further explored as a source of bioactive ingredients for the food, cosmetic, and pharmaceutical industries.This research was funded by the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES, CEEC-IND/00425/2017, UIDB/00690/2020, CEECIND/01011/2018, UIDB/04326/2020, UIDP/04326/2020 and PTDC/BAA-AGR/1391/2020 projects. This study was also made under the frame of the project HaloFarMs, which is part of the Partnership on Research and Innovation in the Mediterranean Area (PRIMA), funded by FCT in Portugal and the Ministry of High Education and Scientific Research in Tunisia. M.J.R. was supported by the FCT program contract (UIDP/04326/2020) and L.C. by the FCT Scientific Employment Stimulus (CEECIND/00425/2017).MDPIBiblioteca Digital do IPBYoussef, SeriaCustódio, LuísaRodrigues, Maria JoãoPereira, Catarina G.Calhelha, Ricardo C.Jekő, JózsefCziáky, ZoltánBen Hamed, Karim2023-12-18T10:25:38Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10198/28967engYoussef, Seria; Custódio, Luisa; Rodrigues, Maria João; Pereira, Catarina G.; Calhelha, Ricardo C.; Jekő, József; Cziáky, Zoltán; Ben Hamed, Karim (2023). Harnessing the bioactive potential of Limonium spathulatum (Desf.) kuntze: insights into enzyme inhibition and phytochemical profile. Plants. eISSN 2223-7747. 12:19, p. 1-1210.3390/plants121933912223-7747info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-20T01:19:31Zoai:bibliotecadigital.ipb.pt:10198/28967Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:55:06.561334Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Harnessing the bioactive potential of Limonium spathulatum (Desf.) kuntze: insights into enzyme inhibition and phytochemical profile |
title |
Harnessing the bioactive potential of Limonium spathulatum (Desf.) kuntze: insights into enzyme inhibition and phytochemical profile |
spellingShingle |
Harnessing the bioactive potential of Limonium spathulatum (Desf.) kuntze: insights into enzyme inhibition and phytochemical profile Youssef, Seria Sea lavender Enzyme inhibitors Phenolic compounds Cytotoxicity |
title_short |
Harnessing the bioactive potential of Limonium spathulatum (Desf.) kuntze: insights into enzyme inhibition and phytochemical profile |
title_full |
Harnessing the bioactive potential of Limonium spathulatum (Desf.) kuntze: insights into enzyme inhibition and phytochemical profile |
title_fullStr |
Harnessing the bioactive potential of Limonium spathulatum (Desf.) kuntze: insights into enzyme inhibition and phytochemical profile |
title_full_unstemmed |
Harnessing the bioactive potential of Limonium spathulatum (Desf.) kuntze: insights into enzyme inhibition and phytochemical profile |
title_sort |
Harnessing the bioactive potential of Limonium spathulatum (Desf.) kuntze: insights into enzyme inhibition and phytochemical profile |
author |
Youssef, Seria |
author_facet |
Youssef, Seria Custódio, Luísa Rodrigues, Maria João Pereira, Catarina G. Calhelha, Ricardo C. Jekő, József Cziáky, Zoltán Ben Hamed, Karim |
author_role |
author |
author2 |
Custódio, Luísa Rodrigues, Maria João Pereira, Catarina G. Calhelha, Ricardo C. Jekő, József Cziáky, Zoltán Ben Hamed, Karim |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Biblioteca Digital do IPB |
dc.contributor.author.fl_str_mv |
Youssef, Seria Custódio, Luísa Rodrigues, Maria João Pereira, Catarina G. Calhelha, Ricardo C. Jekő, József Cziáky, Zoltán Ben Hamed, Karim |
dc.subject.por.fl_str_mv |
Sea lavender Enzyme inhibitors Phenolic compounds Cytotoxicity |
topic |
Sea lavender Enzyme inhibitors Phenolic compounds Cytotoxicity |
description |
This study assessed the halophyte species Limonium spathulatum (Desf.) as a possible source of natural ingredients with the capacity to inhibit enzymes related to relevant human health disorders and food browning. Extracts using food-grade solvents such as water and ethanol were prepared by maceration from dried L. spathulatum leaves. They were evaluated for in vitro inhibition activity of enzymes such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), -glucosidase, tyrosinase and lipase, related to Alzheimer’s disease, type-2-diabetes mellitus, skin hyperpigmentation, and obesity, respectively. These extracts were also appraised for in vitro acute toxicity on tumoral and non-tumoral cell lines and their chemical composition by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS/MS). The extracts were more effective towards BChE than AChE. The best results were obtained with the hydroethanolic and water extracts, with IC50 values of 0.03 mg/mL and 0.06 mg/mL, respectively. The hydroethanolic extract had the highest capacity to inhibit -glucosidase (IC50: 0.04 mg/mL), higher than the positive control used (acarbose, IC50 = 3.14 mg/mL). The ethanol extract displayed the best inhibitory activity against tyrosinase (IC50 = 0.34 mg/mL). The tested samples did not inhibit lipase and exhibited low to moderate cytotoxic activity against the tested cell lines. The hydroethanolic extract had a higher diversity of compounds, followed by the ethanol and water samples. Similar molecules were identified in all the extracts and were mainly hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids. Taken together, these results suggest that L. spathulatum should be further explored as a source of bioactive ingredients for the food, cosmetic, and pharmaceutical industries. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-18T10:25:38Z 2023 2023-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/28967 |
url |
http://hdl.handle.net/10198/28967 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Youssef, Seria; Custódio, Luisa; Rodrigues, Maria João; Pereira, Catarina G.; Calhelha, Ricardo C.; Jekő, József; Cziáky, Zoltán; Ben Hamed, Karim (2023). Harnessing the bioactive potential of Limonium spathulatum (Desf.) kuntze: insights into enzyme inhibition and phytochemical profile. Plants. eISSN 2223-7747. 12:19, p. 1-12 10.3390/plants12193391 2223-7747 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136437969354752 |