Differential scorecards for binary and ordinal data

Detalhes bibliográficos
Autor(a) principal: Silva,PFB
Data de Publicação: 2015
Outros Autores: Jaime Cardoso
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/6086
http://dx.doi.org/10.3233/ida-150788
Resumo: Generalized additive models are well-known as a powerful and palatable predictive modelling technique. Scorecards, the discretized version of generalized additive models, are a long-established method in the industry, due to its balance between simplicity and performance. Scorecards are easy to apply and easy to understand. Moreover, in spite of their simplicity, scorecards can model nonlinear relationships between the inputs and the value to be predicted. In the scientific community, scorecards have been largely overlooked in favor of more recent models such as neural networks or support vector machines. In this paper, we address scorecard development, introducing a new formulation more suitable to support regularization. We tackle both the binary and the ordinal data classification problems. In both settings, the proposed methodology shows advantages when evaluated using real datasets.
id RCAP_70939ca0fed158cb387a504b7ee43a87
oai_identifier_str oai:repositorio.inesctec.pt:123456789/6086
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Differential scorecards for binary and ordinal dataGeneralized additive models are well-known as a powerful and palatable predictive modelling technique. Scorecards, the discretized version of generalized additive models, are a long-established method in the industry, due to its balance between simplicity and performance. Scorecards are easy to apply and easy to understand. Moreover, in spite of their simplicity, scorecards can model nonlinear relationships between the inputs and the value to be predicted. In the scientific community, scorecards have been largely overlooked in favor of more recent models such as neural networks or support vector machines. In this paper, we address scorecard development, introducing a new formulation more suitable to support regularization. We tackle both the binary and the ordinal data classification problems. In both settings, the proposed methodology shows advantages when evaluated using real datasets.2018-01-14T21:01:10Z2015-01-01T00:00:00Z2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/6086http://dx.doi.org/10.3233/ida-150788engSilva,PFBJaime Cardosoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:17Zoai:repositorio.inesctec.pt:123456789/6086Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:55.639584Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Differential scorecards for binary and ordinal data
title Differential scorecards for binary and ordinal data
spellingShingle Differential scorecards for binary and ordinal data
Silva,PFB
title_short Differential scorecards for binary and ordinal data
title_full Differential scorecards for binary and ordinal data
title_fullStr Differential scorecards for binary and ordinal data
title_full_unstemmed Differential scorecards for binary and ordinal data
title_sort Differential scorecards for binary and ordinal data
author Silva,PFB
author_facet Silva,PFB
Jaime Cardoso
author_role author
author2 Jaime Cardoso
author2_role author
dc.contributor.author.fl_str_mv Silva,PFB
Jaime Cardoso
description Generalized additive models are well-known as a powerful and palatable predictive modelling technique. Scorecards, the discretized version of generalized additive models, are a long-established method in the industry, due to its balance between simplicity and performance. Scorecards are easy to apply and easy to understand. Moreover, in spite of their simplicity, scorecards can model nonlinear relationships between the inputs and the value to be predicted. In the scientific community, scorecards have been largely overlooked in favor of more recent models such as neural networks or support vector machines. In this paper, we address scorecard development, introducing a new formulation more suitable to support regularization. We tackle both the binary and the ordinal data classification problems. In both settings, the proposed methodology shows advantages when evaluated using real datasets.
publishDate 2015
dc.date.none.fl_str_mv 2015-01-01T00:00:00Z
2015
2018-01-14T21:01:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/6086
http://dx.doi.org/10.3233/ida-150788
url http://repositorio.inesctec.pt/handle/123456789/6086
http://dx.doi.org/10.3233/ida-150788
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131604763803648