Characterisation of Monodisperse Regimes of a Droplet Stream Generator

Detalhes bibliográficos
Autor(a) principal: Cardoso, João Carlos Canhoto
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/11686
Resumo: The interest in studying droplet related phenomena has been increasing over the last decades. In the fluid dispensing equipment industry, a major problem is to minimise droplet diameter and to eject droplets in a controlled manner with a low-cost device. Micro-droplet generation has gained its popularity for its multiple applications, such as biotechnology, manufacturing engineering, and fuel dispensing. Taking all this into account, a new low-cost droplet stream generator was designed and fabricated. The material used to manufacture the stream droplet generator structure was PLA, since it is a 3D printable material, which allowed to minimise the device cost. This structure has three separated components: lid, fluid chamber, and pinhole holder. In order to simplify the disturbance mechanism, it was decided that the disruption waves should be applied directly to the fluid. To achieve that, a piezoelectric cell that vibrates through the variation of waveform parameters was placed above the liquid chamber, creating disturbances directly onto the liquid surface in a parallel direction, making this device a push mode generator. The interchangeable nozzle used was a round stainlesssteel high precision optical pinhole with three different sizes: 100 µm, 150 µm, and 200 µm. Jet attribute properties (droplet diameter, droplet velocity, and distance between droplets) were measured as the different conditions changed (piezoelectric diaphragm frequency, outlet pressure, and nozzle size). The present work studied the spray characteristics for water, jet fuel and a jet fuel and biofuel mixture, and different monodisperse regimes were found. A full characterisation of them is presented and discussed in detail. It was found that the range of droplet diameter for a pinhole size of 200 µm that can be used for all three fluids is 401 µm to 472 µm and a range of velocity of 1.24 m/s to 2.48m/s, while for a pinhole size of 150 µm the droplet diameter range that can be obtained is 287 µm to 340 µm and a range of velocity of 2.04 m/s to 4.38 m/s for all three fluids. For a pinhole size of 100 µm the droplet diameter range for all three fluids is 206 µm to 258 µm and the velocity range is 2.36 m/s to 5.99 m/s. It was found that both droplet diameter and spacing decrease with the increase of inlet flow rate and frequency, and the most important property in the jet formation is the nozzle size. The jet velocity is also highly influenced by the flow rate and nozzle size. When compared, the three fluids behave in a different manner, resulting in different droplet diameter and velocity values. This can be explained by the fluids properties, where the mixture of jet fuel and biofuel presents higher viscosity than the other two fluids.
id RCAP_70d478ed979845f3cbe585fb6bfc98de
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/11686
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Characterisation of Monodisperse Regimes of a Droplet Stream GeneratorFormação de JatoGerador de Gotas PiezoelétrcioJato de Gotas ContínuasJet Fuel e BiocombustívelRayleigh BreakupRegime MonodispersoDomínio/Área Científica::Engenharia e Tecnologia::Engenharia AeronáuticaThe interest in studying droplet related phenomena has been increasing over the last decades. In the fluid dispensing equipment industry, a major problem is to minimise droplet diameter and to eject droplets in a controlled manner with a low-cost device. Micro-droplet generation has gained its popularity for its multiple applications, such as biotechnology, manufacturing engineering, and fuel dispensing. Taking all this into account, a new low-cost droplet stream generator was designed and fabricated. The material used to manufacture the stream droplet generator structure was PLA, since it is a 3D printable material, which allowed to minimise the device cost. This structure has three separated components: lid, fluid chamber, and pinhole holder. In order to simplify the disturbance mechanism, it was decided that the disruption waves should be applied directly to the fluid. To achieve that, a piezoelectric cell that vibrates through the variation of waveform parameters was placed above the liquid chamber, creating disturbances directly onto the liquid surface in a parallel direction, making this device a push mode generator. The interchangeable nozzle used was a round stainlesssteel high precision optical pinhole with three different sizes: 100 µm, 150 µm, and 200 µm. Jet attribute properties (droplet diameter, droplet velocity, and distance between droplets) were measured as the different conditions changed (piezoelectric diaphragm frequency, outlet pressure, and nozzle size). The present work studied the spray characteristics for water, jet fuel and a jet fuel and biofuel mixture, and different monodisperse regimes were found. A full characterisation of them is presented and discussed in detail. It was found that the range of droplet diameter for a pinhole size of 200 µm that can be used for all three fluids is 401 µm to 472 µm and a range of velocity of 1.24 m/s to 2.48m/s, while for a pinhole size of 150 µm the droplet diameter range that can be obtained is 287 µm to 340 µm and a range of velocity of 2.04 m/s to 4.38 m/s for all three fluids. For a pinhole size of 100 µm the droplet diameter range for all three fluids is 206 µm to 258 µm and the velocity range is 2.36 m/s to 5.99 m/s. It was found that both droplet diameter and spacing decrease with the increase of inlet flow rate and frequency, and the most important property in the jet formation is the nozzle size. The jet velocity is also highly influenced by the flow rate and nozzle size. When compared, the three fluids behave in a different manner, resulting in different droplet diameter and velocity values. This can be explained by the fluids properties, where the mixture of jet fuel and biofuel presents higher viscosity than the other two fluids.O interesse em estudar fenómenos relacionados com as gotas tem vindo a aumentar nas últimas décadas. Na indústria de equipamentos de ejeção de fluidos, um grande problema é minimizar o diâmetro das gotas e ejetá-las de forma controlada utilizando um dispositivo de baixo custo. A geração de micro-gotas ganhou popularidade pelas suas múltiplas aplicações, como biotecnologia, engenharia de fabricação e ejeção de combustível. Tendo tudo isto em conta, um novo gerador de gotas contínuas, de baixo custo, foi projetado e fabricado. PLA foi o material usado para fabricar a estrutura do gerador de gotas dado que é um material de impressão 3D, o que permite minimizar o custo do dispositivo. Esta estrutura tem três componentes separados: tampa da célula piezoelétrica, câmara de fluido e suporte do pinhole. A fim de simplificar o mecanismo de perturbação, foi decidido que as ondas de perturbação devem ser aplicadas diretamente no fluido. Para conseguir isso, uma célula piezoelétrica foi colocada acima da câmara de fluido. O ”nozzle” utilizado é um pinhole óptico redondo de alta precisão, feito de de aço inoxidável e com três tamanhos diferentes: 100 µm, 150 µm e 200 µm. As propriedades do jato (diâmetro da gota, velocidade da gota e distância entre gotas) foram medidas de para diferentes propriedades (frequência da célula piezoelétrica, pressão de fluído e tamanho do ”nozzle”). O presente trabalho estudou as características do spray para três fluidos diferentes (àgua, jet fuel e mistura de biocombustível) e diferentes regimes monodispersos foram encontrados. Uma caracterização destes parametros é apresentada e discutida com detalhe. Verificou-se que o intervalo do diâmetro das gotas para um ”nozzle” com tamanho de 200 µm, que pode ser usado para todos os três fluidos, é de 401 µm até 472 µm e o intervalo de velocidade é de 1, 24 m/s até 2, 48 m/s, enquanto que para um ”nozzle” com um tamanho de 150 µm, a gama de diâmetros que pode ser obtido é de 287 µm até 340 µm e um intervalo de velocidade de 2, 04 m/s até 4, 38 m/s, para os três fluidos. Para um tamanho de pinhole de 100 µm, o intervalo de diâmetros das gotas para todos os três fluidos é de 206 µm a 258 µm e o intervalo de velocidade é 2, 36 m/s a 5, 99 m/s. Verificou-se que, tanto o diâmetro da gota como o espaçamento, diminuem com o aumento da fluxo da entrada e frequência, e a propriedade mais importante na formação do jato é o tamanho do ”nozzle”. A velocidade do jato é muito influenciada pela velocidade do fluxo e pelo tamanho do ”nozzle”. Quando comparados, os três fluidos comportam-se de uma forma diferente, resultando em diferentes diâmetro de gotas e velocidade do jato. Isto pode ser explicado pelas propriedades dos fluidos, onde a mistura de biocombustível apresenta maior viscosidade do que os outros dois fluídos.Silva, André Resende Rodrigues dauBibliorumCardoso, João Carlos Canhoto2022-01-12T15:15:38Z2021-04-212021-03-122021-04-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/11686TID:202847314enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:54:22Zoai:ubibliorum.ubi.pt:10400.6/11686Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:51:25.056332Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Characterisation of Monodisperse Regimes of a Droplet Stream Generator
title Characterisation of Monodisperse Regimes of a Droplet Stream Generator
spellingShingle Characterisation of Monodisperse Regimes of a Droplet Stream Generator
Cardoso, João Carlos Canhoto
Formação de Jato
Gerador de Gotas Piezoelétrcio
Jato de Gotas Contínuas
Jet Fuel e Biocombustível
Rayleigh Breakup
Regime Monodisperso
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
title_short Characterisation of Monodisperse Regimes of a Droplet Stream Generator
title_full Characterisation of Monodisperse Regimes of a Droplet Stream Generator
title_fullStr Characterisation of Monodisperse Regimes of a Droplet Stream Generator
title_full_unstemmed Characterisation of Monodisperse Regimes of a Droplet Stream Generator
title_sort Characterisation of Monodisperse Regimes of a Droplet Stream Generator
author Cardoso, João Carlos Canhoto
author_facet Cardoso, João Carlos Canhoto
author_role author
dc.contributor.none.fl_str_mv Silva, André Resende Rodrigues da
uBibliorum
dc.contributor.author.fl_str_mv Cardoso, João Carlos Canhoto
dc.subject.por.fl_str_mv Formação de Jato
Gerador de Gotas Piezoelétrcio
Jato de Gotas Contínuas
Jet Fuel e Biocombustível
Rayleigh Breakup
Regime Monodisperso
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
topic Formação de Jato
Gerador de Gotas Piezoelétrcio
Jato de Gotas Contínuas
Jet Fuel e Biocombustível
Rayleigh Breakup
Regime Monodisperso
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
description The interest in studying droplet related phenomena has been increasing over the last decades. In the fluid dispensing equipment industry, a major problem is to minimise droplet diameter and to eject droplets in a controlled manner with a low-cost device. Micro-droplet generation has gained its popularity for its multiple applications, such as biotechnology, manufacturing engineering, and fuel dispensing. Taking all this into account, a new low-cost droplet stream generator was designed and fabricated. The material used to manufacture the stream droplet generator structure was PLA, since it is a 3D printable material, which allowed to minimise the device cost. This structure has three separated components: lid, fluid chamber, and pinhole holder. In order to simplify the disturbance mechanism, it was decided that the disruption waves should be applied directly to the fluid. To achieve that, a piezoelectric cell that vibrates through the variation of waveform parameters was placed above the liquid chamber, creating disturbances directly onto the liquid surface in a parallel direction, making this device a push mode generator. The interchangeable nozzle used was a round stainlesssteel high precision optical pinhole with three different sizes: 100 µm, 150 µm, and 200 µm. Jet attribute properties (droplet diameter, droplet velocity, and distance between droplets) were measured as the different conditions changed (piezoelectric diaphragm frequency, outlet pressure, and nozzle size). The present work studied the spray characteristics for water, jet fuel and a jet fuel and biofuel mixture, and different monodisperse regimes were found. A full characterisation of them is presented and discussed in detail. It was found that the range of droplet diameter for a pinhole size of 200 µm that can be used for all three fluids is 401 µm to 472 µm and a range of velocity of 1.24 m/s to 2.48m/s, while for a pinhole size of 150 µm the droplet diameter range that can be obtained is 287 µm to 340 µm and a range of velocity of 2.04 m/s to 4.38 m/s for all three fluids. For a pinhole size of 100 µm the droplet diameter range for all three fluids is 206 µm to 258 µm and the velocity range is 2.36 m/s to 5.99 m/s. It was found that both droplet diameter and spacing decrease with the increase of inlet flow rate and frequency, and the most important property in the jet formation is the nozzle size. The jet velocity is also highly influenced by the flow rate and nozzle size. When compared, the three fluids behave in a different manner, resulting in different droplet diameter and velocity values. This can be explained by the fluids properties, where the mixture of jet fuel and biofuel presents higher viscosity than the other two fluids.
publishDate 2021
dc.date.none.fl_str_mv 2021-04-21
2021-03-12
2021-04-21T00:00:00Z
2022-01-12T15:15:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/11686
TID:202847314
url http://hdl.handle.net/10400.6/11686
identifier_str_mv TID:202847314
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136403418775552