L-cysteine/hydrogen Sulfide Pathway Induces cGMP-dependent Relaxation of Corpus Cavernosum and Penile Arteries From Patients With Erectile Dysfunction and Improves Arterial Vasodilation Induced by PDE5 Inhibition
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.10/2343 |
Resumo: | The aim was to evaluate and characterize H2S-induced relaxation of human corpus cavernosum (HCC) and penile resistance arteries (HPRA) from patients with erectile dysfunction (ED). HCC and HPRA were obtained from men with ED at the time of penile prosthesis insertion. H2S-mediated relaxations were evaluated by exposing these tissues to the stable analogue, NaHS, and to the precursor of H2S, L-cysteine (CYS). The effects of NaHS and CYS were also evaluated on cGMP accumulation in HCC and on acetylcholine- and sildenafil-mediated relaxations in HCC and HPRA. NaHS consistently relaxed HPRA and HCC and more potently than human prostate and bladder. NaHS-induced relaxations in HCC and HPRA were unaffected by the ATP-sensitive K+-channel blocker, glibenclamide or the NO synthase inhibitor, L-NAME, slightly reduced by the Ca2+-activated K+-channel blocker, tetraethylammonium, and markedly inhibited by the soluble guanylyl cyclase inhibitor, ODQ. NaHS caused a cGMP increase in HCC that was inhibited by ODQ. CYS produced relaxations of HCC and HPRA that were sensitive to ODQ and to inhibition of the H2S synthesizing enzymes, cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS). CYS also increased cGMP in HCC. In contrast to NaHS, CYS-induced relaxations were prevented by endothelium removal in HPRA. Only in HPRA, treatment with CYS (30 μM) potentiated acetylcholine- and sildenafil-induced relaxations. This effect was prevented by CSE/CBS inhibition and by removing the endothelium. Exogenous and endogenous H2S relaxes HCC and HPRA from ED patients through cGMP accumulation and potentiates vasodilatory capacity of PDE5 inhibition, supporting the therapeutic potential of modulating H2S pathway. |
id |
RCAP_70d49f17cba38b3a1301868c14a1bc4f |
---|---|
oai_identifier_str |
oai:repositorio.hff.min-saude.pt:10400.10/2343 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
L-cysteine/hydrogen Sulfide Pathway Induces cGMP-dependent Relaxation of Corpus Cavernosum and Penile Arteries From Patients With Erectile Dysfunction and Improves Arterial Vasodilation Induced by PDE5 InhibitionErectile dysfunctionL-cysteineThe aim was to evaluate and characterize H2S-induced relaxation of human corpus cavernosum (HCC) and penile resistance arteries (HPRA) from patients with erectile dysfunction (ED). HCC and HPRA were obtained from men with ED at the time of penile prosthesis insertion. H2S-mediated relaxations were evaluated by exposing these tissues to the stable analogue, NaHS, and to the precursor of H2S, L-cysteine (CYS). The effects of NaHS and CYS were also evaluated on cGMP accumulation in HCC and on acetylcholine- and sildenafil-mediated relaxations in HCC and HPRA. NaHS consistently relaxed HPRA and HCC and more potently than human prostate and bladder. NaHS-induced relaxations in HCC and HPRA were unaffected by the ATP-sensitive K+-channel blocker, glibenclamide or the NO synthase inhibitor, L-NAME, slightly reduced by the Ca2+-activated K+-channel blocker, tetraethylammonium, and markedly inhibited by the soluble guanylyl cyclase inhibitor, ODQ. NaHS caused a cGMP increase in HCC that was inhibited by ODQ. CYS produced relaxations of HCC and HPRA that were sensitive to ODQ and to inhibition of the H2S synthesizing enzymes, cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS). CYS also increased cGMP in HCC. In contrast to NaHS, CYS-induced relaxations were prevented by endothelium removal in HPRA. Only in HPRA, treatment with CYS (30 μM) potentiated acetylcholine- and sildenafil-induced relaxations. This effect was prevented by CSE/CBS inhibition and by removing the endothelium. Exogenous and endogenous H2S relaxes HCC and HPRA from ED patients through cGMP accumulation and potentiates vasodilatory capacity of PDE5 inhibition, supporting the therapeutic potential of modulating H2S pathway.ElsevierRepositório do Hospital Prof. Doutor Fernando FonsecaLa Fuente, JFernández, APepe-Cardoso, AMartínez-Salamanca 4, J Nuno Louro 1, Javier Angulo 5Louro, NAngulo, J2019-12-11T12:06:17Z2019-01-01T00:00:00Z2019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.10/2343engEur J Pharmacol, 863,172675 2019 Nov 151879-071210.1016/j.ejphar.2019.172675metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-20T15:53:02Zoai:repositorio.hff.min-saude.pt:10400.10/2343Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:53:17.332358Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
L-cysteine/hydrogen Sulfide Pathway Induces cGMP-dependent Relaxation of Corpus Cavernosum and Penile Arteries From Patients With Erectile Dysfunction and Improves Arterial Vasodilation Induced by PDE5 Inhibition |
title |
L-cysteine/hydrogen Sulfide Pathway Induces cGMP-dependent Relaxation of Corpus Cavernosum and Penile Arteries From Patients With Erectile Dysfunction and Improves Arterial Vasodilation Induced by PDE5 Inhibition |
spellingShingle |
L-cysteine/hydrogen Sulfide Pathway Induces cGMP-dependent Relaxation of Corpus Cavernosum and Penile Arteries From Patients With Erectile Dysfunction and Improves Arterial Vasodilation Induced by PDE5 Inhibition La Fuente, J Erectile dysfunction L-cysteine |
title_short |
L-cysteine/hydrogen Sulfide Pathway Induces cGMP-dependent Relaxation of Corpus Cavernosum and Penile Arteries From Patients With Erectile Dysfunction and Improves Arterial Vasodilation Induced by PDE5 Inhibition |
title_full |
L-cysteine/hydrogen Sulfide Pathway Induces cGMP-dependent Relaxation of Corpus Cavernosum and Penile Arteries From Patients With Erectile Dysfunction and Improves Arterial Vasodilation Induced by PDE5 Inhibition |
title_fullStr |
L-cysteine/hydrogen Sulfide Pathway Induces cGMP-dependent Relaxation of Corpus Cavernosum and Penile Arteries From Patients With Erectile Dysfunction and Improves Arterial Vasodilation Induced by PDE5 Inhibition |
title_full_unstemmed |
L-cysteine/hydrogen Sulfide Pathway Induces cGMP-dependent Relaxation of Corpus Cavernosum and Penile Arteries From Patients With Erectile Dysfunction and Improves Arterial Vasodilation Induced by PDE5 Inhibition |
title_sort |
L-cysteine/hydrogen Sulfide Pathway Induces cGMP-dependent Relaxation of Corpus Cavernosum and Penile Arteries From Patients With Erectile Dysfunction and Improves Arterial Vasodilation Induced by PDE5 Inhibition |
author |
La Fuente, J |
author_facet |
La Fuente, J Fernández, A Pepe-Cardoso, A Martínez-Salamanca 4, J Nuno Louro 1, Javier Angulo 5 Louro, N Angulo, J |
author_role |
author |
author2 |
Fernández, A Pepe-Cardoso, A Martínez-Salamanca 4, J Nuno Louro 1, Javier Angulo 5 Louro, N Angulo, J |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Repositório do Hospital Prof. Doutor Fernando Fonseca |
dc.contributor.author.fl_str_mv |
La Fuente, J Fernández, A Pepe-Cardoso, A Martínez-Salamanca 4, J Nuno Louro 1, Javier Angulo 5 Louro, N Angulo, J |
dc.subject.por.fl_str_mv |
Erectile dysfunction L-cysteine |
topic |
Erectile dysfunction L-cysteine |
description |
The aim was to evaluate and characterize H2S-induced relaxation of human corpus cavernosum (HCC) and penile resistance arteries (HPRA) from patients with erectile dysfunction (ED). HCC and HPRA were obtained from men with ED at the time of penile prosthesis insertion. H2S-mediated relaxations were evaluated by exposing these tissues to the stable analogue, NaHS, and to the precursor of H2S, L-cysteine (CYS). The effects of NaHS and CYS were also evaluated on cGMP accumulation in HCC and on acetylcholine- and sildenafil-mediated relaxations in HCC and HPRA. NaHS consistently relaxed HPRA and HCC and more potently than human prostate and bladder. NaHS-induced relaxations in HCC and HPRA were unaffected by the ATP-sensitive K+-channel blocker, glibenclamide or the NO synthase inhibitor, L-NAME, slightly reduced by the Ca2+-activated K+-channel blocker, tetraethylammonium, and markedly inhibited by the soluble guanylyl cyclase inhibitor, ODQ. NaHS caused a cGMP increase in HCC that was inhibited by ODQ. CYS produced relaxations of HCC and HPRA that were sensitive to ODQ and to inhibition of the H2S synthesizing enzymes, cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS). CYS also increased cGMP in HCC. In contrast to NaHS, CYS-induced relaxations were prevented by endothelium removal in HPRA. Only in HPRA, treatment with CYS (30 μM) potentiated acetylcholine- and sildenafil-induced relaxations. This effect was prevented by CSE/CBS inhibition and by removing the endothelium. Exogenous and endogenous H2S relaxes HCC and HPRA from ED patients through cGMP accumulation and potentiates vasodilatory capacity of PDE5 inhibition, supporting the therapeutic potential of modulating H2S pathway. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-11T12:06:17Z 2019-01-01T00:00:00Z 2019-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.10/2343 |
url |
http://hdl.handle.net/10400.10/2343 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Eur J Pharmacol, 863,172675 2019 Nov 15 1879-0712 10.1016/j.ejphar.2019.172675 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799130399716147200 |