Frequency detection of experimental errors through Learning Analytics techniques
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/21484 |
Resumo: | The process that systematically collects and analyzes large volumes of data in order to improve the teaching-learning process is called Learning Analytics. Based on data processing, educational data mining and visualization, it is possible to monitor academic progress, enhancing actions on how the teacher should conduct the discipline. The objective of this research is to mine data from experiments carried out in the remote laboratory called “Virtual Instrument Systems in Reality”. In order to create classification groups according to theoretical analysis studied in circuit analysis. The k-NN classification model was used for this research. The algorithm presented a very satisfactory result, its accuracy resulted in samples with values greater than 0.9. Considering an excellent form of classification analysis for circuits with 1: 1, 0: 1, 1:0 model. |
id |
RCAP_7145ce1741dc17721377cc23c7aaf486 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/21484 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Frequency detection of experimental errors through Learning Analytics techniquesLearning AnalyticsClassification AlgorithmRemote labsEngineering educationVISIRRemote LaboratorySimple Electrical CircuitsThe process that systematically collects and analyzes large volumes of data in order to improve the teaching-learning process is called Learning Analytics. Based on data processing, educational data mining and visualization, it is possible to monitor academic progress, enhancing actions on how the teacher should conduct the discipline. The objective of this research is to mine data from experiments carried out in the remote laboratory called “Virtual Instrument Systems in Reality”. In order to create classification groups according to theoretical analysis studied in circuit analysis. The k-NN classification model was used for this research. The algorithm presented a very satisfactory result, its accuracy resulted in samples with values greater than 0.9. Considering an excellent form of classification analysis for circuits with 1: 1, 0: 1, 1:0 model.IEEERepositório Científico do Instituto Politécnico do PortoCosta, Heverton MarcosAlves, Gustavo R.Silva, Juarez Bento DaMota Alves, Joao Bosco Da20222033-01-01T00:00:00Z2022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/21484eng10.1109/TAEE54169.2022.9840595metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-04-12T01:47:05Zoai:recipp.ipp.pt:10400.22/21484Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:41:32.582470Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Frequency detection of experimental errors through Learning Analytics techniques |
title |
Frequency detection of experimental errors through Learning Analytics techniques |
spellingShingle |
Frequency detection of experimental errors through Learning Analytics techniques Costa, Heverton Marcos Learning Analytics Classification Algorithm Remote labs Engineering education VISIR Remote Laboratory Simple Electrical Circuits |
title_short |
Frequency detection of experimental errors through Learning Analytics techniques |
title_full |
Frequency detection of experimental errors through Learning Analytics techniques |
title_fullStr |
Frequency detection of experimental errors through Learning Analytics techniques |
title_full_unstemmed |
Frequency detection of experimental errors through Learning Analytics techniques |
title_sort |
Frequency detection of experimental errors through Learning Analytics techniques |
author |
Costa, Heverton Marcos |
author_facet |
Costa, Heverton Marcos Alves, Gustavo R. Silva, Juarez Bento Da Mota Alves, Joao Bosco Da |
author_role |
author |
author2 |
Alves, Gustavo R. Silva, Juarez Bento Da Mota Alves, Joao Bosco Da |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Costa, Heverton Marcos Alves, Gustavo R. Silva, Juarez Bento Da Mota Alves, Joao Bosco Da |
dc.subject.por.fl_str_mv |
Learning Analytics Classification Algorithm Remote labs Engineering education VISIR Remote Laboratory Simple Electrical Circuits |
topic |
Learning Analytics Classification Algorithm Remote labs Engineering education VISIR Remote Laboratory Simple Electrical Circuits |
description |
The process that systematically collects and analyzes large volumes of data in order to improve the teaching-learning process is called Learning Analytics. Based on data processing, educational data mining and visualization, it is possible to monitor academic progress, enhancing actions on how the teacher should conduct the discipline. The objective of this research is to mine data from experiments carried out in the remote laboratory called “Virtual Instrument Systems in Reality”. In order to create classification groups according to theoretical analysis studied in circuit analysis. The k-NN classification model was used for this research. The algorithm presented a very satisfactory result, its accuracy resulted in samples with values greater than 0.9. Considering an excellent form of classification analysis for circuits with 1: 1, 0: 1, 1:0 model. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2022-01-01T00:00:00Z 2033-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/21484 |
url |
http://hdl.handle.net/10400.22/21484 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1109/TAEE54169.2022.9840595 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131503008940032 |