Hydrodynamic Effects on Biofilm Development and Recombinant Protein Expression
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/152998 |
Resumo: | Hydrodynamics play an important role in the rate of cell attachment and nutrient and oxygen transfer, which can affect biofilm development and the level of recombinant protein production. In the present study, the effects of different flow conditions on the development of Escherichia coli biofilms and the expression of a model recombinant protein (enhanced green fluorescent protein, eGFP) were examined. Planktonic and biofilm cells were grown at two different flow rates in a recirculating flow cell system for 7 days: 255 and 128 L h(-1) (corresponding to a Reynolds number of 4600 and 2300, respectively). The fluorometric analysis showed that the specific eGFP production was higher in biofilms than in planktonic cells under both hydrodynamic conditions (3-fold higher for 255 L h(-1) and 2-fold higher for 128 L h(-1)). In the biofilm cells, the percentage of eGFP-expressing cells was on average 52% higher at a flow rate of 255 L h(-1). Furthermore, a higher plasmid copy number (PCN) was obtained for the highest flow rate for both planktonic (244 PCN/cell versus 118 PCN/cell) and biofilm cells (43 PCN/cell versus 29 PCN/cell). The results suggested that higher flow velocities promoted eGFP expression in E. coli biofilms. |
id |
RCAP_720d88102c1d7c212681efc092c47649 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/152998 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Hydrodynamic Effects on Biofilm Development and Recombinant Protein ExpressionHydrodynamics play an important role in the rate of cell attachment and nutrient and oxygen transfer, which can affect biofilm development and the level of recombinant protein production. In the present study, the effects of different flow conditions on the development of Escherichia coli biofilms and the expression of a model recombinant protein (enhanced green fluorescent protein, eGFP) were examined. Planktonic and biofilm cells were grown at two different flow rates in a recirculating flow cell system for 7 days: 255 and 128 L h(-1) (corresponding to a Reynolds number of 4600 and 2300, respectively). The fluorometric analysis showed that the specific eGFP production was higher in biofilms than in planktonic cells under both hydrodynamic conditions (3-fold higher for 255 L h(-1) and 2-fold higher for 128 L h(-1)). In the biofilm cells, the percentage of eGFP-expressing cells was on average 52% higher at a flow rate of 255 L h(-1). Furthermore, a higher plasmid copy number (PCN) was obtained for the highest flow rate for both planktonic (244 PCN/cell versus 118 PCN/cell) and biofilm cells (43 PCN/cell versus 29 PCN/cell). The results suggested that higher flow velocities promoted eGFP expression in E. coli biofilms.20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/152998eng10.3390/microorganisms10050931Soares, ALuciana GomesMonteiro, GAFilipe Mergulhãoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:16:41Zoai:repositorio-aberto.up.pt:10216/152998Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:19:33.833431Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Hydrodynamic Effects on Biofilm Development and Recombinant Protein Expression |
title |
Hydrodynamic Effects on Biofilm Development and Recombinant Protein Expression |
spellingShingle |
Hydrodynamic Effects on Biofilm Development and Recombinant Protein Expression Soares, A |
title_short |
Hydrodynamic Effects on Biofilm Development and Recombinant Protein Expression |
title_full |
Hydrodynamic Effects on Biofilm Development and Recombinant Protein Expression |
title_fullStr |
Hydrodynamic Effects on Biofilm Development and Recombinant Protein Expression |
title_full_unstemmed |
Hydrodynamic Effects on Biofilm Development and Recombinant Protein Expression |
title_sort |
Hydrodynamic Effects on Biofilm Development and Recombinant Protein Expression |
author |
Soares, A |
author_facet |
Soares, A Luciana Gomes Monteiro, GA Filipe Mergulhão |
author_role |
author |
author2 |
Luciana Gomes Monteiro, GA Filipe Mergulhão |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Soares, A Luciana Gomes Monteiro, GA Filipe Mergulhão |
description |
Hydrodynamics play an important role in the rate of cell attachment and nutrient and oxygen transfer, which can affect biofilm development and the level of recombinant protein production. In the present study, the effects of different flow conditions on the development of Escherichia coli biofilms and the expression of a model recombinant protein (enhanced green fluorescent protein, eGFP) were examined. Planktonic and biofilm cells were grown at two different flow rates in a recirculating flow cell system for 7 days: 255 and 128 L h(-1) (corresponding to a Reynolds number of 4600 and 2300, respectively). The fluorometric analysis showed that the specific eGFP production was higher in biofilms than in planktonic cells under both hydrodynamic conditions (3-fold higher for 255 L h(-1) and 2-fold higher for 128 L h(-1)). In the biofilm cells, the percentage of eGFP-expressing cells was on average 52% higher at a flow rate of 255 L h(-1). Furthermore, a higher plasmid copy number (PCN) was obtained for the highest flow rate for both planktonic (244 PCN/cell versus 118 PCN/cell) and biofilm cells (43 PCN/cell versus 29 PCN/cell). The results suggested that higher flow velocities promoted eGFP expression in E. coli biofilms. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2022-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/152998 |
url |
https://hdl.handle.net/10216/152998 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.3390/microorganisms10050931 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136113510580225 |