Linear Aerospike Contour Design using Angelino’s Method and CFD Validation

Detalhes bibliográficos
Autor(a) principal: Silva, João Pedro Cristóvão
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/13804
Resumo: Single-stage-to-orbit (SSTO) vehicles have the potential to enhance space transportation reliability and reduce costs. However, traditional nozzles with conical and bell-shaped contours are limited in their ability to deliver ideal performance across the entire flight envelope. As a result, various advanced rocket designs with altitude adaptive characteristics have been proposed, among which the dual-bell, E-D, and aerospike concepts have shown the most promise. This dissertation focuses specifically on the aerospike concept, aiming to design and evaluate a contour using numerical tools. To achieve this objective, Angelino’s method is implemented using Python to generate the aerospike contour for a specific operating altitude of 15545 meters, corresponding to a pressure ratio (PR) of 188 at the design point. The input parameters provided to the Python code include an exit Mach number of 4.16, an adiabatic index of 1.4 and the specification of 100 expansion lines. The CFD process for the numerical studies of the contour validation is performed using Ansys Workbench, specifically utilizing SpaceClaim for designing the control volume geometry and Fluent for solving the flow. In Fluent, a density-based solver is employed to analyze the flow behavior. Two different viscosity models are considered in the analysis: inviscid and realizable k-e. In addition to the design conditions, three additional PR are simulated: 20 (sea-level), 288 (altitude of 18285 m), and 20480 (altitude of 47750 m). It was concluded that both the inviscid and realizable k-e models exhibit a similar performance prediciton of the aerospike nozzle as it operates at different altitudes, as indicated by the specific impulse. Still, it was the realizable k-e model that demonstrated a higher level of detail in capturing flow phenomena compared to available experimental investigations. This included features such as better modeled Mach diamond and a temperature distribution with values above 7000 K. Regarding the altitude adaptability of the aerospike nozzle, its performance was observed to improve with increasing altitude. Underexpanded conditions demonstrated a nearly axial exhaust plume, showcasing the aerospike’s capability in maintaining thrust efficiency. In contrast, overexpanded conditions resulted in the lowest specific impulse. These findings highlight the advantages of the aerospike nozzle over traditional nozzles, which typically struggle in underexpansion scenarios.
id RCAP_7343b0a2005192b12436a2064293c3ee
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/13804
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Linear Aerospike Contour Design using Angelino’s Method and CFD ValidationAerospike LinearDesign de Contorno de TubeiraDinâmica dos Fluidos ComputacionalEupo (Estágio Único para Órbita)Tubeiras de Foguete AvançadasDomínio/Área Científica::Engenharia e Tecnologia::Engenharia AeronáuticaSingle-stage-to-orbit (SSTO) vehicles have the potential to enhance space transportation reliability and reduce costs. However, traditional nozzles with conical and bell-shaped contours are limited in their ability to deliver ideal performance across the entire flight envelope. As a result, various advanced rocket designs with altitude adaptive characteristics have been proposed, among which the dual-bell, E-D, and aerospike concepts have shown the most promise. This dissertation focuses specifically on the aerospike concept, aiming to design and evaluate a contour using numerical tools. To achieve this objective, Angelino’s method is implemented using Python to generate the aerospike contour for a specific operating altitude of 15545 meters, corresponding to a pressure ratio (PR) of 188 at the design point. The input parameters provided to the Python code include an exit Mach number of 4.16, an adiabatic index of 1.4 and the specification of 100 expansion lines. The CFD process for the numerical studies of the contour validation is performed using Ansys Workbench, specifically utilizing SpaceClaim for designing the control volume geometry and Fluent for solving the flow. In Fluent, a density-based solver is employed to analyze the flow behavior. Two different viscosity models are considered in the analysis: inviscid and realizable k-e. In addition to the design conditions, three additional PR are simulated: 20 (sea-level), 288 (altitude of 18285 m), and 20480 (altitude of 47750 m). It was concluded that both the inviscid and realizable k-e models exhibit a similar performance prediciton of the aerospike nozzle as it operates at different altitudes, as indicated by the specific impulse. Still, it was the realizable k-e model that demonstrated a higher level of detail in capturing flow phenomena compared to available experimental investigations. This included features such as better modeled Mach diamond and a temperature distribution with values above 7000 K. Regarding the altitude adaptability of the aerospike nozzle, its performance was observed to improve with increasing altitude. Underexpanded conditions demonstrated a nearly axial exhaust plume, showcasing the aerospike’s capability in maintaining thrust efficiency. In contrast, overexpanded conditions resulted in the lowest specific impulse. These findings highlight the advantages of the aerospike nozzle over traditional nozzles, which typically struggle in underexpansion scenarios.Veículos de estágio único para órbita (EUPO) têm o potencial de aumentar a confiabilidade do transporte espacial e reduzir os custos. No entanto, as tubeiras tradicionais cónicas e em formato de sino, têm uma capacidade limitada para fornecer um desempenho ideal em todo o envelope de voo. Como resultado, diversos designs avançados de tubeiras adaptativas à altitude têm sido propostos, entre os quais os conceitos de bocais em sino duplo, E-D e aerospike têm mostrado maior potencial. Esta dissertação concentra-se no aerospike, com o objetivo de projetar e avaliar um contorno utilizando ferramentas numéricas. Para atingir esse objetivo, o método de Angelino é implementado em Python para gerar o contorno para uma altitude operacional de 15545 metros, correspondente a uma razão de pressão (RP) de 188 no ponto de projeto. Os parâmetros fornecidos ao código incluem um Número de Mach à saída de 4,16, um índice adiabático de 1,4 e a especificação de 100 linhas de expansão. O processo de CFD, para os estudos numéricos que validam o contorno, é realizado no Ansys Workbench, especificamente utilizando o SpaceClaim para projetar a geometria do volume de controle e o Fluent para resolver o escoamento. No Fluent, é usado um solver baseado em densidade e dois modelos de viscosidade diferentes são considerados na análise: invíscido e realizable k-e. Além das condições de projeto, três RP adicionais são simuladas: 20 (nível do mar), 288 (altitude de 18285 m) e 20480 (altitude de 47750 m). Concluiu-se que, tanto o modelo inviscido, quer o realizable k-e, apresentam uma previsão de desempenho similar da tubeira à medida que o aerospike opera em diferentes altitudes, conforme indicado pelo impulso específico. Mas, foi o modelo realizable k-e que demonstrou um maior nível de captura de detalhes de fenômenos do escoamento em comparação com investigações experimentais disponíveis. Inclui características como melhor caracterização do diamante de Mach e uma temperatura máxima registrada de mais de 7000 K. Em relação à adaptabilidade à altitude, a performance melhora com o aumento desta. Condições de subexpansão demonstraram um jato quase axial, destacando a capacidade do aerospike em manter a eficiência em altitude. Contudo, em sobreexpansão há um menor impulso específico. Estes resultados destacam as vantagens do aerospike em relação às tubeiras tradicionais, que geralmente têm maiores dificuldades em cenários de subexpansão.Brojo, Francisco Miguel Ribeiro ProençauBibliorumSilva, João Pedro Cristóvão2023-11-24T09:35:31Z2023-07-122023-06-122023-07-12T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/13804TID:203390172enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:57:31Zoai:ubibliorum.ubi.pt:10400.6/13804Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:53:09.788566Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Linear Aerospike Contour Design using Angelino’s Method and CFD Validation
title Linear Aerospike Contour Design using Angelino’s Method and CFD Validation
spellingShingle Linear Aerospike Contour Design using Angelino’s Method and CFD Validation
Silva, João Pedro Cristóvão
Aerospike Linear
Design de Contorno de Tubeira
Dinâmica dos Fluidos Computacional
Eupo (Estágio Único para Órbita)
Tubeiras de Foguete Avançadas
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
title_short Linear Aerospike Contour Design using Angelino’s Method and CFD Validation
title_full Linear Aerospike Contour Design using Angelino’s Method and CFD Validation
title_fullStr Linear Aerospike Contour Design using Angelino’s Method and CFD Validation
title_full_unstemmed Linear Aerospike Contour Design using Angelino’s Method and CFD Validation
title_sort Linear Aerospike Contour Design using Angelino’s Method and CFD Validation
author Silva, João Pedro Cristóvão
author_facet Silva, João Pedro Cristóvão
author_role author
dc.contributor.none.fl_str_mv Brojo, Francisco Miguel Ribeiro Proença
uBibliorum
dc.contributor.author.fl_str_mv Silva, João Pedro Cristóvão
dc.subject.por.fl_str_mv Aerospike Linear
Design de Contorno de Tubeira
Dinâmica dos Fluidos Computacional
Eupo (Estágio Único para Órbita)
Tubeiras de Foguete Avançadas
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
topic Aerospike Linear
Design de Contorno de Tubeira
Dinâmica dos Fluidos Computacional
Eupo (Estágio Único para Órbita)
Tubeiras de Foguete Avançadas
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
description Single-stage-to-orbit (SSTO) vehicles have the potential to enhance space transportation reliability and reduce costs. However, traditional nozzles with conical and bell-shaped contours are limited in their ability to deliver ideal performance across the entire flight envelope. As a result, various advanced rocket designs with altitude adaptive characteristics have been proposed, among which the dual-bell, E-D, and aerospike concepts have shown the most promise. This dissertation focuses specifically on the aerospike concept, aiming to design and evaluate a contour using numerical tools. To achieve this objective, Angelino’s method is implemented using Python to generate the aerospike contour for a specific operating altitude of 15545 meters, corresponding to a pressure ratio (PR) of 188 at the design point. The input parameters provided to the Python code include an exit Mach number of 4.16, an adiabatic index of 1.4 and the specification of 100 expansion lines. The CFD process for the numerical studies of the contour validation is performed using Ansys Workbench, specifically utilizing SpaceClaim for designing the control volume geometry and Fluent for solving the flow. In Fluent, a density-based solver is employed to analyze the flow behavior. Two different viscosity models are considered in the analysis: inviscid and realizable k-e. In addition to the design conditions, three additional PR are simulated: 20 (sea-level), 288 (altitude of 18285 m), and 20480 (altitude of 47750 m). It was concluded that both the inviscid and realizable k-e models exhibit a similar performance prediciton of the aerospike nozzle as it operates at different altitudes, as indicated by the specific impulse. Still, it was the realizable k-e model that demonstrated a higher level of detail in capturing flow phenomena compared to available experimental investigations. This included features such as better modeled Mach diamond and a temperature distribution with values above 7000 K. Regarding the altitude adaptability of the aerospike nozzle, its performance was observed to improve with increasing altitude. Underexpanded conditions demonstrated a nearly axial exhaust plume, showcasing the aerospike’s capability in maintaining thrust efficiency. In contrast, overexpanded conditions resulted in the lowest specific impulse. These findings highlight the advantages of the aerospike nozzle over traditional nozzles, which typically struggle in underexpansion scenarios.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-24T09:35:31Z
2023-07-12
2023-06-12
2023-07-12T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/13804
TID:203390172
url http://hdl.handle.net/10400.6/13804
identifier_str_mv TID:203390172
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136420014587904