Glass container production scheduling through hybrid multi-population based evolutionary algorithm
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://repositorio.inesctec.pt/handle/123456789/4659 http://dx.doi.org/10.1016/j.asoc.2012.03.074 |
Resumo: | Driven by a real-world application in the capital-intensive glass container industry, this paper provides the design of a new hybrid evolutionary algorithm to tackle the short-term production planning and scheduling problem. The challenge consists of sizing and scheduling the lots in the most cost-effective manner on a set of parallel molding machines that are fed by a furnace that melts the glass. The solution procedure combines a multi-population hierarchically structured genetic algorithm (GA) with a simulated annealing (SA), and a tailor-made heuristic named cavity heuristic (CH). The SA is applied to intensify the search for solutions in the neighborhood of the best individuals found by the GA, while the CH determines quickly values for a relevant decision variable of the problem: the processing speed of each machine. The results indicate the superior performance of the proposed approach against a state-of-the-art commercial solver, and compared to a non-hybridized multi-population GA. |
id |
RCAP_73cc54f1c316c79e2aeac4dedb0d182b |
---|---|
oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/4659 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Glass container production scheduling through hybrid multi-population based evolutionary algorithmDriven by a real-world application in the capital-intensive glass container industry, this paper provides the design of a new hybrid evolutionary algorithm to tackle the short-term production planning and scheduling problem. The challenge consists of sizing and scheduling the lots in the most cost-effective manner on a set of parallel molding machines that are fed by a furnace that melts the glass. The solution procedure combines a multi-population hierarchically structured genetic algorithm (GA) with a simulated annealing (SA), and a tailor-made heuristic named cavity heuristic (CH). The SA is applied to intensify the search for solutions in the neighborhood of the best individuals found by the GA, while the CH determines quickly values for a relevant decision variable of the problem: the processing speed of each machine. The results indicate the superior performance of the proposed approach against a state-of-the-art commercial solver, and compared to a non-hybridized multi-population GA.2017-12-21T14:32:21Z2013-01-01T00:00:00Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/4659http://dx.doi.org/10.1016/j.asoc.2012.03.074engMotta Toledo,CFMArantes,MDRibeiro de Oliveira,RRRBernardo Almada-Loboinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:51Zoai:repositorio.inesctec.pt:123456789/4659Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:53:42.956794Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Glass container production scheduling through hybrid multi-population based evolutionary algorithm |
title |
Glass container production scheduling through hybrid multi-population based evolutionary algorithm |
spellingShingle |
Glass container production scheduling through hybrid multi-population based evolutionary algorithm Motta Toledo,CFM |
title_short |
Glass container production scheduling through hybrid multi-population based evolutionary algorithm |
title_full |
Glass container production scheduling through hybrid multi-population based evolutionary algorithm |
title_fullStr |
Glass container production scheduling through hybrid multi-population based evolutionary algorithm |
title_full_unstemmed |
Glass container production scheduling through hybrid multi-population based evolutionary algorithm |
title_sort |
Glass container production scheduling through hybrid multi-population based evolutionary algorithm |
author |
Motta Toledo,CFM |
author_facet |
Motta Toledo,CFM Arantes,MD Ribeiro de Oliveira,RRR Bernardo Almada-Lobo |
author_role |
author |
author2 |
Arantes,MD Ribeiro de Oliveira,RRR Bernardo Almada-Lobo |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Motta Toledo,CFM Arantes,MD Ribeiro de Oliveira,RRR Bernardo Almada-Lobo |
description |
Driven by a real-world application in the capital-intensive glass container industry, this paper provides the design of a new hybrid evolutionary algorithm to tackle the short-term production planning and scheduling problem. The challenge consists of sizing and scheduling the lots in the most cost-effective manner on a set of parallel molding machines that are fed by a furnace that melts the glass. The solution procedure combines a multi-population hierarchically structured genetic algorithm (GA) with a simulated annealing (SA), and a tailor-made heuristic named cavity heuristic (CH). The SA is applied to intensify the search for solutions in the neighborhood of the best individuals found by the GA, while the CH determines quickly values for a relevant decision variable of the problem: the processing speed of each machine. The results indicate the superior performance of the proposed approach against a state-of-the-art commercial solver, and compared to a non-hybridized multi-population GA. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-01T00:00:00Z 2013 2017-12-21T14:32:21Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/4659 http://dx.doi.org/10.1016/j.asoc.2012.03.074 |
url |
http://repositorio.inesctec.pt/handle/123456789/4659 http://dx.doi.org/10.1016/j.asoc.2012.03.074 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131611159068672 |