Glass container production scheduling through hybrid multi-population based evolutionary algorithm

Detalhes bibliográficos
Autor(a) principal: Motta Toledo,CFM
Data de Publicação: 2013
Outros Autores: Arantes,MD, Ribeiro de Oliveira,RRR, Bernardo Almada-Lobo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/4659
http://dx.doi.org/10.1016/j.asoc.2012.03.074
Resumo: Driven by a real-world application in the capital-intensive glass container industry, this paper provides the design of a new hybrid evolutionary algorithm to tackle the short-term production planning and scheduling problem. The challenge consists of sizing and scheduling the lots in the most cost-effective manner on a set of parallel molding machines that are fed by a furnace that melts the glass. The solution procedure combines a multi-population hierarchically structured genetic algorithm (GA) with a simulated annealing (SA), and a tailor-made heuristic named cavity heuristic (CH). The SA is applied to intensify the search for solutions in the neighborhood of the best individuals found by the GA, while the CH determines quickly values for a relevant decision variable of the problem: the processing speed of each machine. The results indicate the superior performance of the proposed approach against a state-of-the-art commercial solver, and compared to a non-hybridized multi-population GA.
id RCAP_73cc54f1c316c79e2aeac4dedb0d182b
oai_identifier_str oai:repositorio.inesctec.pt:123456789/4659
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Glass container production scheduling through hybrid multi-population based evolutionary algorithmDriven by a real-world application in the capital-intensive glass container industry, this paper provides the design of a new hybrid evolutionary algorithm to tackle the short-term production planning and scheduling problem. The challenge consists of sizing and scheduling the lots in the most cost-effective manner on a set of parallel molding machines that are fed by a furnace that melts the glass. The solution procedure combines a multi-population hierarchically structured genetic algorithm (GA) with a simulated annealing (SA), and a tailor-made heuristic named cavity heuristic (CH). The SA is applied to intensify the search for solutions in the neighborhood of the best individuals found by the GA, while the CH determines quickly values for a relevant decision variable of the problem: the processing speed of each machine. The results indicate the superior performance of the proposed approach against a state-of-the-art commercial solver, and compared to a non-hybridized multi-population GA.2017-12-21T14:32:21Z2013-01-01T00:00:00Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/4659http://dx.doi.org/10.1016/j.asoc.2012.03.074engMotta Toledo,CFMArantes,MDRibeiro de Oliveira,RRRBernardo Almada-Loboinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:51Zoai:repositorio.inesctec.pt:123456789/4659Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:53:42.956794Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Glass container production scheduling through hybrid multi-population based evolutionary algorithm
title Glass container production scheduling through hybrid multi-population based evolutionary algorithm
spellingShingle Glass container production scheduling through hybrid multi-population based evolutionary algorithm
Motta Toledo,CFM
title_short Glass container production scheduling through hybrid multi-population based evolutionary algorithm
title_full Glass container production scheduling through hybrid multi-population based evolutionary algorithm
title_fullStr Glass container production scheduling through hybrid multi-population based evolutionary algorithm
title_full_unstemmed Glass container production scheduling through hybrid multi-population based evolutionary algorithm
title_sort Glass container production scheduling through hybrid multi-population based evolutionary algorithm
author Motta Toledo,CFM
author_facet Motta Toledo,CFM
Arantes,MD
Ribeiro de Oliveira,RRR
Bernardo Almada-Lobo
author_role author
author2 Arantes,MD
Ribeiro de Oliveira,RRR
Bernardo Almada-Lobo
author2_role author
author
author
dc.contributor.author.fl_str_mv Motta Toledo,CFM
Arantes,MD
Ribeiro de Oliveira,RRR
Bernardo Almada-Lobo
description Driven by a real-world application in the capital-intensive glass container industry, this paper provides the design of a new hybrid evolutionary algorithm to tackle the short-term production planning and scheduling problem. The challenge consists of sizing and scheduling the lots in the most cost-effective manner on a set of parallel molding machines that are fed by a furnace that melts the glass. The solution procedure combines a multi-population hierarchically structured genetic algorithm (GA) with a simulated annealing (SA), and a tailor-made heuristic named cavity heuristic (CH). The SA is applied to intensify the search for solutions in the neighborhood of the best individuals found by the GA, while the CH determines quickly values for a relevant decision variable of the problem: the processing speed of each machine. The results indicate the superior performance of the proposed approach against a state-of-the-art commercial solver, and compared to a non-hybridized multi-population GA.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-01T00:00:00Z
2013
2017-12-21T14:32:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/4659
http://dx.doi.org/10.1016/j.asoc.2012.03.074
url http://repositorio.inesctec.pt/handle/123456789/4659
http://dx.doi.org/10.1016/j.asoc.2012.03.074
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131611159068672