Airborne spread of infectious SARS-CoV-2: Moving forward using lessons from SARS-CoV and MERS-CoV

Detalhes bibliográficos
Autor(a) principal: de Silva, PG
Data de Publicação: 2020
Outros Autores: Nascimento, MSJ, Soares, RRG, Sousa, SIV, Mesquita, JR
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/149576
Resumo: Background: Although an increasing body of data reports the detection of SARS-CoV-2 RNA in air, this does not correlate to the presence of infectious viruses, thus not evaluating the risk for airborne COVID-19. Hence there is a marked knowledge gap that requires urgent attention. Therefore, in this systematic review, viability/stability of airborne SARS-CoV-2, SARS-CoV and MERS-CoV viruses is discussed. Methods: A systematic literature review was performed on PubMed/MEDLINE, Web of Science and Scopus to assess the stability and viability of SARS-CoV, MERS-CoV and SARS-CoV-2 on air samples. Results and discussion: The initial search identified 27 articles. Following screening of titles and abstracts and removing duplicates, 11 articles were considered relevant. Temperatures ranging from 20 °C to 25 °C and relative humidity ranging from 40% to 50% were reported to have a protective effect on viral viability for airborne SARS-CoV and MERS-CoV. As no data is yet available on the conditions influencing viability for airborne SARS-CoV-2, and given the genetic similarity to SARS-CoV and MERS-CoV, one could extrapolate that the same conditions would apply. Nonetheless, the effect of these conditions seems to be residual considering the increasing number of cases in the south of USA, Brazil and India, where high temperatures and humidities have been observed. Conclusion: Higher temperatures and high relative humidity can have a modest effect on SARS-CoV-2 viability in the environment, as reported in previous studies to this date. However, these studies are experimental, and do not support the fact that the virus has efficiently spread in the tropical regions of the globe, with other transmission routes such as the contact and droplet ones probably being responsible for the majority of cases reported in these regions, along with other factors such as human mobility patterns and contact rates. Further studies are needed to investigate the extent of aerosol transmission of SARS-CoV-2 as this would have important implications for public health and infection-control policies.
id RCAP_744c977e3459e7053b39fe5aea530aad
oai_identifier_str oai:repositorio-aberto.up.pt:10216/149576
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Airborne spread of infectious SARS-CoV-2: Moving forward using lessons from SARS-CoV and MERS-CoVAirborneCOVID-19Emerging diseasesInfectiousSARS-CoV-2ViabilityBackground: Although an increasing body of data reports the detection of SARS-CoV-2 RNA in air, this does not correlate to the presence of infectious viruses, thus not evaluating the risk for airborne COVID-19. Hence there is a marked knowledge gap that requires urgent attention. Therefore, in this systematic review, viability/stability of airborne SARS-CoV-2, SARS-CoV and MERS-CoV viruses is discussed. Methods: A systematic literature review was performed on PubMed/MEDLINE, Web of Science and Scopus to assess the stability and viability of SARS-CoV, MERS-CoV and SARS-CoV-2 on air samples. Results and discussion: The initial search identified 27 articles. Following screening of titles and abstracts and removing duplicates, 11 articles were considered relevant. Temperatures ranging from 20 °C to 25 °C and relative humidity ranging from 40% to 50% were reported to have a protective effect on viral viability for airborne SARS-CoV and MERS-CoV. As no data is yet available on the conditions influencing viability for airborne SARS-CoV-2, and given the genetic similarity to SARS-CoV and MERS-CoV, one could extrapolate that the same conditions would apply. Nonetheless, the effect of these conditions seems to be residual considering the increasing number of cases in the south of USA, Brazil and India, where high temperatures and humidities have been observed. Conclusion: Higher temperatures and high relative humidity can have a modest effect on SARS-CoV-2 viability in the environment, as reported in previous studies to this date. However, these studies are experimental, and do not support the fact that the virus has efficiently spread in the tropical regions of the globe, with other transmission routes such as the contact and droplet ones probably being responsible for the majority of cases reported in these regions, along with other factors such as human mobility patterns and contact rates. Further studies are needed to investigate the extent of aerosol transmission of SARS-CoV-2 as this would have important implications for public health and infection-control policies.Elsevier20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/149576eng0048-96971879-102610.1016/j.scitotenv.2020.142802de Silva, PGNascimento, MSJSoares, RRGSousa, SIVMesquita, JRinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T12:43:34Zoai:repositorio-aberto.up.pt:10216/149576Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:25:31.606047Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Airborne spread of infectious SARS-CoV-2: Moving forward using lessons from SARS-CoV and MERS-CoV
title Airborne spread of infectious SARS-CoV-2: Moving forward using lessons from SARS-CoV and MERS-CoV
spellingShingle Airborne spread of infectious SARS-CoV-2: Moving forward using lessons from SARS-CoV and MERS-CoV
de Silva, PG
Airborne
COVID-19
Emerging diseases
Infectious
SARS-CoV-2
Viability
title_short Airborne spread of infectious SARS-CoV-2: Moving forward using lessons from SARS-CoV and MERS-CoV
title_full Airborne spread of infectious SARS-CoV-2: Moving forward using lessons from SARS-CoV and MERS-CoV
title_fullStr Airborne spread of infectious SARS-CoV-2: Moving forward using lessons from SARS-CoV and MERS-CoV
title_full_unstemmed Airborne spread of infectious SARS-CoV-2: Moving forward using lessons from SARS-CoV and MERS-CoV
title_sort Airborne spread of infectious SARS-CoV-2: Moving forward using lessons from SARS-CoV and MERS-CoV
author de Silva, PG
author_facet de Silva, PG
Nascimento, MSJ
Soares, RRG
Sousa, SIV
Mesquita, JR
author_role author
author2 Nascimento, MSJ
Soares, RRG
Sousa, SIV
Mesquita, JR
author2_role author
author
author
author
dc.contributor.author.fl_str_mv de Silva, PG
Nascimento, MSJ
Soares, RRG
Sousa, SIV
Mesquita, JR
dc.subject.por.fl_str_mv Airborne
COVID-19
Emerging diseases
Infectious
SARS-CoV-2
Viability
topic Airborne
COVID-19
Emerging diseases
Infectious
SARS-CoV-2
Viability
description Background: Although an increasing body of data reports the detection of SARS-CoV-2 RNA in air, this does not correlate to the presence of infectious viruses, thus not evaluating the risk for airborne COVID-19. Hence there is a marked knowledge gap that requires urgent attention. Therefore, in this systematic review, viability/stability of airborne SARS-CoV-2, SARS-CoV and MERS-CoV viruses is discussed. Methods: A systematic literature review was performed on PubMed/MEDLINE, Web of Science and Scopus to assess the stability and viability of SARS-CoV, MERS-CoV and SARS-CoV-2 on air samples. Results and discussion: The initial search identified 27 articles. Following screening of titles and abstracts and removing duplicates, 11 articles were considered relevant. Temperatures ranging from 20 °C to 25 °C and relative humidity ranging from 40% to 50% were reported to have a protective effect on viral viability for airborne SARS-CoV and MERS-CoV. As no data is yet available on the conditions influencing viability for airborne SARS-CoV-2, and given the genetic similarity to SARS-CoV and MERS-CoV, one could extrapolate that the same conditions would apply. Nonetheless, the effect of these conditions seems to be residual considering the increasing number of cases in the south of USA, Brazil and India, where high temperatures and humidities have been observed. Conclusion: Higher temperatures and high relative humidity can have a modest effect on SARS-CoV-2 viability in the environment, as reported in previous studies to this date. However, these studies are experimental, and do not support the fact that the virus has efficiently spread in the tropical regions of the globe, with other transmission routes such as the contact and droplet ones probably being responsible for the majority of cases reported in these regions, along with other factors such as human mobility patterns and contact rates. Further studies are needed to investigate the extent of aerosol transmission of SARS-CoV-2 as this would have important implications for public health and infection-control policies.
publishDate 2020
dc.date.none.fl_str_mv 2020
2020-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/149576
url https://hdl.handle.net/10216/149576
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0048-9697
1879-1026
10.1016/j.scitotenv.2020.142802
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135560185413632