Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approaches

Detalhes bibliográficos
Autor(a) principal: Pardo, Cesar Camilo Garcia
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/155944
Resumo: Cryptocurrencies have become appealing investment options in recent years because of their high potential returns. This asset class emerged as a unique investment opportunity with distinguishing characteristics such as decentralized nature and uncorrelation with other assets. Investing in this product, however, has become a hazardous venture due to its extreme volatility and unpredictable price swings. As a result, a portfolio optimization is an essential tool for investors seeking to reduce risk while aiming for high returns. This thesis studies the Deep Reinforcement Learning models applied to cryptocurrency portfolio optimization compared to traditional methodologies like Markowitz's and rudimentary equally weighted portfolios.
id RCAP_74fdec463c317c1c1faf5d4d7b585a81
oai_identifier_str oai:run.unl.pt:10362/155944
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approachesCryptocurrencyDecentralizedDeep reinforcement learningMarkowitz's OptimizationPortfolio optimizationDomínio/Área Científica::Ciências Sociais::Economia e GestãoCryptocurrencies have become appealing investment options in recent years because of their high potential returns. This asset class emerged as a unique investment opportunity with distinguishing characteristics such as decentralized nature and uncorrelation with other assets. Investing in this product, however, has become a hazardous venture due to its extreme volatility and unpredictable price swings. As a result, a portfolio optimization is an essential tool for investors seeking to reduce risk while aiming for high returns. This thesis studies the Deep Reinforcement Learning models applied to cryptocurrency portfolio optimization compared to traditional methodologies like Markowitz's and rudimentary equally weighted portfolios.Prado, MelissaRUNPardo, Cesar Camilo Garcia2023-07-28T14:41:19Z2023-01-122022-12-162023-01-12T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/155944TID:203312180enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:38:33Zoai:run.unl.pt:10362/155944Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:56:17.223910Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approaches
title Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approaches
spellingShingle Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approaches
Pardo, Cesar Camilo Garcia
Cryptocurrency
Decentralized
Deep reinforcement learning
Markowitz's Optimization
Portfolio optimization
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approaches
title_full Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approaches
title_fullStr Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approaches
title_full_unstemmed Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approaches
title_sort Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approaches
author Pardo, Cesar Camilo Garcia
author_facet Pardo, Cesar Camilo Garcia
author_role author
dc.contributor.none.fl_str_mv Prado, Melissa
RUN
dc.contributor.author.fl_str_mv Pardo, Cesar Camilo Garcia
dc.subject.por.fl_str_mv Cryptocurrency
Decentralized
Deep reinforcement learning
Markowitz's Optimization
Portfolio optimization
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Cryptocurrency
Decentralized
Deep reinforcement learning
Markowitz's Optimization
Portfolio optimization
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description Cryptocurrencies have become appealing investment options in recent years because of their high potential returns. This asset class emerged as a unique investment opportunity with distinguishing characteristics such as decentralized nature and uncorrelation with other assets. Investing in this product, however, has become a hazardous venture due to its extreme volatility and unpredictable price swings. As a result, a portfolio optimization is an essential tool for investors seeking to reduce risk while aiming for high returns. This thesis studies the Deep Reinforcement Learning models applied to cryptocurrency portfolio optimization compared to traditional methodologies like Markowitz's and rudimentary equally weighted portfolios.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-16
2023-07-28T14:41:19Z
2023-01-12
2023-01-12T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/155944
TID:203312180
url http://hdl.handle.net/10362/155944
identifier_str_mv TID:203312180
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138148635115520