Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approaches
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/155944 |
Resumo: | Cryptocurrencies have become appealing investment options in recent years because of their high potential returns. This asset class emerged as a unique investment opportunity with distinguishing characteristics such as decentralized nature and uncorrelation with other assets. Investing in this product, however, has become a hazardous venture due to its extreme volatility and unpredictable price swings. As a result, a portfolio optimization is an essential tool for investors seeking to reduce risk while aiming for high returns. This thesis studies the Deep Reinforcement Learning models applied to cryptocurrency portfolio optimization compared to traditional methodologies like Markowitz's and rudimentary equally weighted portfolios. |
id |
RCAP_74fdec463c317c1c1faf5d4d7b585a81 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/155944 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approachesCryptocurrencyDecentralizedDeep reinforcement learningMarkowitz's OptimizationPortfolio optimizationDomínio/Área Científica::Ciências Sociais::Economia e GestãoCryptocurrencies have become appealing investment options in recent years because of their high potential returns. This asset class emerged as a unique investment opportunity with distinguishing characteristics such as decentralized nature and uncorrelation with other assets. Investing in this product, however, has become a hazardous venture due to its extreme volatility and unpredictable price swings. As a result, a portfolio optimization is an essential tool for investors seeking to reduce risk while aiming for high returns. This thesis studies the Deep Reinforcement Learning models applied to cryptocurrency portfolio optimization compared to traditional methodologies like Markowitz's and rudimentary equally weighted portfolios.Prado, MelissaRUNPardo, Cesar Camilo Garcia2023-07-28T14:41:19Z2023-01-122022-12-162023-01-12T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/155944TID:203312180enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:38:33Zoai:run.unl.pt:10362/155944Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:56:17.223910Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approaches |
title |
Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approaches |
spellingShingle |
Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approaches Pardo, Cesar Camilo Garcia Cryptocurrency Decentralized Deep reinforcement learning Markowitz's Optimization Portfolio optimization Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approaches |
title_full |
Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approaches |
title_fullStr |
Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approaches |
title_full_unstemmed |
Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approaches |
title_sort |
Portfolio optimization in cryptocurrencies: a comparison of deep reinforcement learning and traditional approaches |
author |
Pardo, Cesar Camilo Garcia |
author_facet |
Pardo, Cesar Camilo Garcia |
author_role |
author |
dc.contributor.none.fl_str_mv |
Prado, Melissa RUN |
dc.contributor.author.fl_str_mv |
Pardo, Cesar Camilo Garcia |
dc.subject.por.fl_str_mv |
Cryptocurrency Decentralized Deep reinforcement learning Markowitz's Optimization Portfolio optimization Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Cryptocurrency Decentralized Deep reinforcement learning Markowitz's Optimization Portfolio optimization Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
Cryptocurrencies have become appealing investment options in recent years because of their high potential returns. This asset class emerged as a unique investment opportunity with distinguishing characteristics such as decentralized nature and uncorrelation with other assets. Investing in this product, however, has become a hazardous venture due to its extreme volatility and unpredictable price swings. As a result, a portfolio optimization is an essential tool for investors seeking to reduce risk while aiming for high returns. This thesis studies the Deep Reinforcement Learning models applied to cryptocurrency portfolio optimization compared to traditional methodologies like Markowitz's and rudimentary equally weighted portfolios. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-16 2023-07-28T14:41:19Z 2023-01-12 2023-01-12T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/155944 TID:203312180 |
url |
http://hdl.handle.net/10362/155944 |
identifier_str_mv |
TID:203312180 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138148635115520 |