OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEM
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/160632 |
Resumo: | A key component in an automatic surveillance system that can receive crowd-sourced data, such as an early forest fire detection system, must consider the possibility of corrupted data and also attacks on the processors in the network running the estimation task. In both cases, there is the need to introduce some process to decide when to remove a specific value from the computations. In this thesis, we study using reputation and rating metrics to construct an algorithm that is resilient to erroneous data and attacks in linear dynamical systems and compare it against traditional methods to remove outliers. It is shown in simulation that the presented methods have performance comparing or surpassing the traditional methods, which is an interesting outcome that reinforces the importance of the literature on rating and reputation use for resilient consensus and distributed optimization. |
id |
RCAP_766020daf97193fe9ff23c3244ae43a6 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/160632 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEMOutlier DetectionIsolation ForestLocal Factor OutlierOne Class Support Vector MachinesMinimum Covariance DeterminantRating and ReputationDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaA key component in an automatic surveillance system that can receive crowd-sourced data, such as an early forest fire detection system, must consider the possibility of corrupted data and also attacks on the processors in the network running the estimation task. In both cases, there is the need to introduce some process to decide when to remove a specific value from the computations. In this thesis, we study using reputation and rating metrics to construct an algorithm that is resilient to erroneous data and attacks in linear dynamical systems and compare it against traditional methods to remove outliers. It is shown in simulation that the presented methods have performance comparing or surpassing the traditional methods, which is an interesting outcome that reinforces the importance of the literature on rating and reputation use for resilient consensus and distributed optimization.Um componente-chave num sistema de vigilância automática que pode receber dados de crowdsourcing, como um sistema de detecção preventiva de incêndios florestais, deve considerar a possibilidade de existirem dados corrompidos e também ataques aos processadores na rede que executam a tarefa de estimação. Em ambos os casos, há a necessidade de introduzir algum processo para decidir quando remover um valor específico aos cálculos. Nesta tese, estudamos o uso de métricas de reputação e classificação para construir um algoritmo resiliente a dados erróneos e ataques em sistemas dinâmicos lineares e comparamos com métodos tradicionais de remoção de valores atípicos. É mostrado em simulação, que os métodos apresentados têm desempenho semelhante ou superior ao dos métodos tradicionais, o que é um resultado interessante que reforça a importância da literatura sobre uso de rating e reputação para consenso resiliente e otimização distribuída.Silvestre, DanielRUNMatias, Pedro Miguel Pereira2023-11-28T20:33:04Z2023-052023-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/160632enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:43:22Zoai:run.unl.pt:10362/160632Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:58:08.358938Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEM |
title |
OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEM |
spellingShingle |
OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEM Matias, Pedro Miguel Pereira Outlier Detection Isolation Forest Local Factor Outlier One Class Support Vector Machines Minimum Covariance Determinant Rating and Reputation Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEM |
title_full |
OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEM |
title_fullStr |
OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEM |
title_full_unstemmed |
OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEM |
title_sort |
OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEM |
author |
Matias, Pedro Miguel Pereira |
author_facet |
Matias, Pedro Miguel Pereira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silvestre, Daniel RUN |
dc.contributor.author.fl_str_mv |
Matias, Pedro Miguel Pereira |
dc.subject.por.fl_str_mv |
Outlier Detection Isolation Forest Local Factor Outlier One Class Support Vector Machines Minimum Covariance Determinant Rating and Reputation Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Outlier Detection Isolation Forest Local Factor Outlier One Class Support Vector Machines Minimum Covariance Determinant Rating and Reputation Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
A key component in an automatic surveillance system that can receive crowd-sourced data, such as an early forest fire detection system, must consider the possibility of corrupted data and also attacks on the processors in the network running the estimation task. In both cases, there is the need to introduce some process to decide when to remove a specific value from the computations. In this thesis, we study using reputation and rating metrics to construct an algorithm that is resilient to erroneous data and attacks in linear dynamical systems and compare it against traditional methods to remove outliers. It is shown in simulation that the presented methods have performance comparing or surpassing the traditional methods, which is an interesting outcome that reinforces the importance of the literature on rating and reputation use for resilient consensus and distributed optimization. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-28T20:33:04Z 2023-05 2023-05-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/160632 |
url |
http://hdl.handle.net/10362/160632 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138163081347072 |