OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEM

Detalhes bibliográficos
Autor(a) principal: Matias, Pedro Miguel Pereira
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/160632
Resumo: A key component in an automatic surveillance system that can receive crowd-sourced data, such as an early forest fire detection system, must consider the possibility of corrupted data and also attacks on the processors in the network running the estimation task. In both cases, there is the need to introduce some process to decide when to remove a specific value from the computations. In this thesis, we study using reputation and rating metrics to construct an algorithm that is resilient to erroneous data and attacks in linear dynamical systems and compare it against traditional methods to remove outliers. It is shown in simulation that the presented methods have performance comparing or surpassing the traditional methods, which is an interesting outcome that reinforces the importance of the literature on rating and reputation use for resilient consensus and distributed optimization.
id RCAP_766020daf97193fe9ff23c3244ae43a6
oai_identifier_str oai:run.unl.pt:10362/160632
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEMOutlier DetectionIsolation ForestLocal Factor OutlierOne Class Support Vector MachinesMinimum Covariance DeterminantRating and ReputationDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaA key component in an automatic surveillance system that can receive crowd-sourced data, such as an early forest fire detection system, must consider the possibility of corrupted data and also attacks on the processors in the network running the estimation task. In both cases, there is the need to introduce some process to decide when to remove a specific value from the computations. In this thesis, we study using reputation and rating metrics to construct an algorithm that is resilient to erroneous data and attacks in linear dynamical systems and compare it against traditional methods to remove outliers. It is shown in simulation that the presented methods have performance comparing or surpassing the traditional methods, which is an interesting outcome that reinforces the importance of the literature on rating and reputation use for resilient consensus and distributed optimization.Um componente-chave num sistema de vigilância automática que pode receber dados de crowdsourcing, como um sistema de detecção preventiva de incêndios florestais, deve considerar a possibilidade de existirem dados corrompidos e também ataques aos processadores na rede que executam a tarefa de estimação. Em ambos os casos, há a necessidade de introduzir algum processo para decidir quando remover um valor específico aos cálculos. Nesta tese, estudamos o uso de métricas de reputação e classificação para construir um algoritmo resiliente a dados erróneos e ataques em sistemas dinâmicos lineares e comparamos com métodos tradicionais de remoção de valores atípicos. É mostrado em simulação, que os métodos apresentados têm desempenho semelhante ou superior ao dos métodos tradicionais, o que é um resultado interessante que reforça a importância da literatura sobre uso de rating e reputação para consenso resiliente e otimização distribuída.Silvestre, DanielRUNMatias, Pedro Miguel Pereira2023-11-28T20:33:04Z2023-052023-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/160632enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:43:22Zoai:run.unl.pt:10362/160632Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:58:08.358938Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEM
title OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEM
spellingShingle OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEM
Matias, Pedro Miguel Pereira
Outlier Detection
Isolation Forest
Local Factor Outlier
One Class Support Vector Machines
Minimum Covariance Determinant
Rating and Reputation
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEM
title_full OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEM
title_fullStr OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEM
title_full_unstemmed OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEM
title_sort OUTLIER AND ATTACKER RESILIENT METHODS BASED ON RATING AND REPUTATION SYSTEM
author Matias, Pedro Miguel Pereira
author_facet Matias, Pedro Miguel Pereira
author_role author
dc.contributor.none.fl_str_mv Silvestre, Daniel
RUN
dc.contributor.author.fl_str_mv Matias, Pedro Miguel Pereira
dc.subject.por.fl_str_mv Outlier Detection
Isolation Forest
Local Factor Outlier
One Class Support Vector Machines
Minimum Covariance Determinant
Rating and Reputation
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Outlier Detection
Isolation Forest
Local Factor Outlier
One Class Support Vector Machines
Minimum Covariance Determinant
Rating and Reputation
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description A key component in an automatic surveillance system that can receive crowd-sourced data, such as an early forest fire detection system, must consider the possibility of corrupted data and also attacks on the processors in the network running the estimation task. In both cases, there is the need to introduce some process to decide when to remove a specific value from the computations. In this thesis, we study using reputation and rating metrics to construct an algorithm that is resilient to erroneous data and attacks in linear dynamical systems and compare it against traditional methods to remove outliers. It is shown in simulation that the presented methods have performance comparing or surpassing the traditional methods, which is an interesting outcome that reinforces the importance of the literature on rating and reputation use for resilient consensus and distributed optimization.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-28T20:33:04Z
2023-05
2023-05-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/160632
url http://hdl.handle.net/10362/160632
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138163081347072