Geospatial analysis of extreme weather events in Nigeria (1985-2015) using self organizing maps
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/34214 |
Resumo: | Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial Technologies |
id |
RCAP_76858bacb4fd4014a9788e4a323bb96c |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/34214 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Geospatial analysis of extreme weather events in Nigeria (1985-2015) using self organizing mapsSelf Organizing MapsExtreme ClimatePrecipitationNigeriaDissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesThe explosion of data in the information age has provided an opportunity to explore the possibility of characterizing the climate patterns using data mining techniques. Nigeria has a unique tropical climate with two precipitation regimes: low precipitation in the north leading to aridity and desertification, and high precipitation in parts of the south west and south east leading to large scale flooding. In this research, four indices have been used to characterize the intensity, frequency and amount of rainfall over Nigeria. A type of Artificial Neural Network called Self Organizing Map has been used to reduce the multiplicity of dimensions and produce four unique zones characterizing extreme precipitation conditions in Nigeria. This approach allowed for the assessment of spatial and temporal patterns in extreme precipitation in the last three decades. Precipitation properties for each cluster are discussed. The cluster spatially closest to the Atlantic has high values of precipitation intensity, frequency and duration, whereas the cluster spatially closest to the Sahara Desert has low values. A significant increasing trend has been observed in the frequency of rainy days in the northern region of Nigeria.Henriques, Roberto André PereiraCosta, Ana Cristina Marinho daMateu Mahiques, JorgeRUNAkande, Adeoluwa Stephen2018-04-10T12:45:31Z2017-03-012017-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/34214TID:201896192enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:18:45Zoai:run.unl.pt:10362/34214Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:30:08.393905Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Geospatial analysis of extreme weather events in Nigeria (1985-2015) using self organizing maps |
title |
Geospatial analysis of extreme weather events in Nigeria (1985-2015) using self organizing maps |
spellingShingle |
Geospatial analysis of extreme weather events in Nigeria (1985-2015) using self organizing maps Akande, Adeoluwa Stephen Self Organizing Maps Extreme Climate Precipitation Nigeria |
title_short |
Geospatial analysis of extreme weather events in Nigeria (1985-2015) using self organizing maps |
title_full |
Geospatial analysis of extreme weather events in Nigeria (1985-2015) using self organizing maps |
title_fullStr |
Geospatial analysis of extreme weather events in Nigeria (1985-2015) using self organizing maps |
title_full_unstemmed |
Geospatial analysis of extreme weather events in Nigeria (1985-2015) using self organizing maps |
title_sort |
Geospatial analysis of extreme weather events in Nigeria (1985-2015) using self organizing maps |
author |
Akande, Adeoluwa Stephen |
author_facet |
Akande, Adeoluwa Stephen |
author_role |
author |
dc.contributor.none.fl_str_mv |
Henriques, Roberto André Pereira Costa, Ana Cristina Marinho da Mateu Mahiques, Jorge RUN |
dc.contributor.author.fl_str_mv |
Akande, Adeoluwa Stephen |
dc.subject.por.fl_str_mv |
Self Organizing Maps Extreme Climate Precipitation Nigeria |
topic |
Self Organizing Maps Extreme Climate Precipitation Nigeria |
description |
Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial Technologies |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03-01 2017-03-01T00:00:00Z 2018-04-10T12:45:31Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/34214 TID:201896192 |
url |
http://hdl.handle.net/10362/34214 |
identifier_str_mv |
TID:201896192 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137926046547968 |