Recommending media content based on machine learning methods
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/6581 |
Resumo: | Dissertação para obtenção do Grau de Mestre em Engenharia Informática |
id |
RCAP_769e6ff9c0bf7a573cac0e6b3451658f |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/6581 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Recommending media content based on machine learning methodsRecommender systemsCollaborative filteringMatrix factorizationGroupbased recommendationsInteractive TVDissertação para obtenção do Grau de Mestre em Engenharia InformáticaInformation is nowadays made available and consumed faster than ever before. This information technology generation has access to a tremendous deal of data and is left with the heavy burden of choosing what is relevant. With the increasing growth of media sources, the amount of content made available to users has become overwhelming and in need to be managed. Recommender systems emerged with the purpose of providing personalized and meaningful content recommendations based on users’ preferences and usage history. Due to their utility and commercial potential, recommender systems integrate many audiovisual content providers and represent one of their most important and valuable services. The goal of this thesis is to develop a recommender system based on matrix factorization methods, capable of providing meaningful and personalized product recommendations to individual users and groups of users, by taking into account users’ rating patterns and biased tendencies, as well as their fluctuations throughout time.Faculdade de Ciências e TecnologiaMagalhães, JoãoRUNDias, Pedro Ricardo Gomes2011-12-28T16:12:27Z20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/6581enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T03:37:41Zoai:run.unl.pt:10362/6581Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:16:53.063340Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Recommending media content based on machine learning methods |
title |
Recommending media content based on machine learning methods |
spellingShingle |
Recommending media content based on machine learning methods Dias, Pedro Ricardo Gomes Recommender systems Collaborative filtering Matrix factorization Groupbased recommendations Interactive TV |
title_short |
Recommending media content based on machine learning methods |
title_full |
Recommending media content based on machine learning methods |
title_fullStr |
Recommending media content based on machine learning methods |
title_full_unstemmed |
Recommending media content based on machine learning methods |
title_sort |
Recommending media content based on machine learning methods |
author |
Dias, Pedro Ricardo Gomes |
author_facet |
Dias, Pedro Ricardo Gomes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Magalhães, João RUN |
dc.contributor.author.fl_str_mv |
Dias, Pedro Ricardo Gomes |
dc.subject.por.fl_str_mv |
Recommender systems Collaborative filtering Matrix factorization Groupbased recommendations Interactive TV |
topic |
Recommender systems Collaborative filtering Matrix factorization Groupbased recommendations Interactive TV |
description |
Dissertação para obtenção do Grau de Mestre em Engenharia Informática |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12-28T16:12:27Z 2011 2011-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/6581 |
url |
http://hdl.handle.net/10362/6581 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Faculdade de Ciências e Tecnologia |
publisher.none.fl_str_mv |
Faculdade de Ciências e Tecnologia |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137817560875008 |