Implementing machine learning for data breach detection

Detalhes bibliográficos
Autor(a) principal: Gama, José Martim Mendes de Vasconcellos Rebelo da
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/111618
Resumo: Privata. ai is a User and Entity Behavior Analytics (UEBA) application used for the detection of data breaches in an organization. By tracking down the usual access to personal and sensitive data, it becomes much easier to detect an outlier. These anomalies could result in a real threat to the company’s data security and must, therefore, be promptly detected and addressed. This paper focuses on the managerial challenges that arise from the increasing threat of data breaches and how machine learning could help in protecting organizations from them. For this purpose, large part of the challenge came from understanding the unique specificities of these attacks and finding an appropriate machine learning method to detect them. Given the fact that the data used to train the models was randomly generated, the results should be taken with caution. Nevertheless, the models used for this paper should be taken as a basis for the future development of the software.
id RCAP_76f990e7a6f49f5f458ce86517e833dd
oai_identifier_str oai:run.unl.pt:10362/111618
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Implementing machine learning for data breach detectionMachine LearningUser and entity behavior analyticsAnomaly detectionDomínio/Área Científica::Ciências Sociais::Economia e GestãoPrivata. ai is a User and Entity Behavior Analytics (UEBA) application used for the detection of data breaches in an organization. By tracking down the usual access to personal and sensitive data, it becomes much easier to detect an outlier. These anomalies could result in a real threat to the company’s data security and must, therefore, be promptly detected and addressed. This paper focuses on the managerial challenges that arise from the increasing threat of data breaches and how machine learning could help in protecting organizations from them. For this purpose, large part of the challenge came from understanding the unique specificities of these attacks and finding an appropriate machine learning method to detect them. Given the fact that the data used to train the models was randomly generated, the results should be taken with caution. Nevertheless, the models used for this paper should be taken as a basis for the future development of the software.Xufre, PatríciaRUNGama, José Martim Mendes de Vasconcellos Rebelo da2021-02-10T15:08:05Z2020-06-022020-05-222020-06-02T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/111618TID:202609383enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:55:31Zoai:run.unl.pt:10362/111618Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:41:58.015148Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Implementing machine learning for data breach detection
title Implementing machine learning for data breach detection
spellingShingle Implementing machine learning for data breach detection
Gama, José Martim Mendes de Vasconcellos Rebelo da
Machine Learning
User and entity behavior analytics
Anomaly detection
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Implementing machine learning for data breach detection
title_full Implementing machine learning for data breach detection
title_fullStr Implementing machine learning for data breach detection
title_full_unstemmed Implementing machine learning for data breach detection
title_sort Implementing machine learning for data breach detection
author Gama, José Martim Mendes de Vasconcellos Rebelo da
author_facet Gama, José Martim Mendes de Vasconcellos Rebelo da
author_role author
dc.contributor.none.fl_str_mv Xufre, Patrícia
RUN
dc.contributor.author.fl_str_mv Gama, José Martim Mendes de Vasconcellos Rebelo da
dc.subject.por.fl_str_mv Machine Learning
User and entity behavior analytics
Anomaly detection
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Machine Learning
User and entity behavior analytics
Anomaly detection
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description Privata. ai is a User and Entity Behavior Analytics (UEBA) application used for the detection of data breaches in an organization. By tracking down the usual access to personal and sensitive data, it becomes much easier to detect an outlier. These anomalies could result in a real threat to the company’s data security and must, therefore, be promptly detected and addressed. This paper focuses on the managerial challenges that arise from the increasing threat of data breaches and how machine learning could help in protecting organizations from them. For this purpose, large part of the challenge came from understanding the unique specificities of these attacks and finding an appropriate machine learning method to detect them. Given the fact that the data used to train the models was randomly generated, the results should be taken with caution. Nevertheless, the models used for this paper should be taken as a basis for the future development of the software.
publishDate 2020
dc.date.none.fl_str_mv 2020-06-02
2020-05-22
2020-06-02T00:00:00Z
2021-02-10T15:08:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/111618
TID:202609383
url http://hdl.handle.net/10362/111618
identifier_str_mv TID:202609383
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138032276733952