Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularization

Detalhes bibliográficos
Autor(a) principal: Gigli, Pierfrancesco
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/108603
Resumo: This paper studies how a machine learning algorithm can generate tactical allocation which out performs returns fora pre-defined benchmark. We use three distinct and diverse data sets to implement the model which tries to forecast the next month’ sa selected equity index price. The algorithm used to accomplish this task is Elastic Net.Once the predictions are generated from an out-of-sample subset, we elaborate a tactical portfolio allocation aiming to maximize the return of a different combination of classical allocation between bonds and equity,and a risk parity strategy. Finally, we evaluate those returns by comparing them to the benchmark.
id RCAP_77343265fd568a371743b5061374695e
oai_identifier_str oai:run.unl.pt:10362/108603
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularizationMachine learningElastic netPortfolio optimizationTactical allocationInvestment strategyDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis paper studies how a machine learning algorithm can generate tactical allocation which out performs returns fora pre-defined benchmark. We use three distinct and diverse data sets to implement the model which tries to forecast the next month’ sa selected equity index price. The algorithm used to accomplish this task is Elastic Net.Once the predictions are generated from an out-of-sample subset, we elaborate a tactical portfolio allocation aiming to maximize the return of a different combination of classical allocation between bonds and equity,and a risk parity strategy. Finally, we evaluate those returns by comparing them to the benchmark.Ribeiro, Gonçalo SommerRUNGigli, Pierfrancesco2023-05-22T00:30:45Z2020-06-082020-05-222020-06-08T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/108603TID:202524264enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:53:01Zoai:run.unl.pt:10362/108603Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:41:11.908423Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularization
title Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularization
spellingShingle Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularization
Gigli, Pierfrancesco
Machine learning
Elastic net
Portfolio optimization
Tactical allocation
Investment strategy
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularization
title_full Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularization
title_fullStr Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularization
title_full_unstemmed Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularization
title_sort Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularization
author Gigli, Pierfrancesco
author_facet Gigli, Pierfrancesco
author_role author
dc.contributor.none.fl_str_mv Ribeiro, Gonçalo Sommer
RUN
dc.contributor.author.fl_str_mv Gigli, Pierfrancesco
dc.subject.por.fl_str_mv Machine learning
Elastic net
Portfolio optimization
Tactical allocation
Investment strategy
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Machine learning
Elastic net
Portfolio optimization
Tactical allocation
Investment strategy
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description This paper studies how a machine learning algorithm can generate tactical allocation which out performs returns fora pre-defined benchmark. We use three distinct and diverse data sets to implement the model which tries to forecast the next month’ sa selected equity index price. The algorithm used to accomplish this task is Elastic Net.Once the predictions are generated from an out-of-sample subset, we elaborate a tactical portfolio allocation aiming to maximize the return of a different combination of classical allocation between bonds and equity,and a risk parity strategy. Finally, we evaluate those returns by comparing them to the benchmark.
publishDate 2020
dc.date.none.fl_str_mv 2020-06-08
2020-05-22
2020-06-08T00:00:00Z
2023-05-22T00:30:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/108603
TID:202524264
url http://hdl.handle.net/10362/108603
identifier_str_mv TID:202524264
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138025619324928