Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/108603 |
Resumo: | This paper studies how a machine learning algorithm can generate tactical allocation which out performs returns fora pre-defined benchmark. We use three distinct and diverse data sets to implement the model which tries to forecast the next month’ sa selected equity index price. The algorithm used to accomplish this task is Elastic Net.Once the predictions are generated from an out-of-sample subset, we elaborate a tactical portfolio allocation aiming to maximize the return of a different combination of classical allocation between bonds and equity,and a risk parity strategy. Finally, we evaluate those returns by comparing them to the benchmark. |
id |
RCAP_77343265fd568a371743b5061374695e |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/108603 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularizationMachine learningElastic netPortfolio optimizationTactical allocationInvestment strategyDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis paper studies how a machine learning algorithm can generate tactical allocation which out performs returns fora pre-defined benchmark. We use three distinct and diverse data sets to implement the model which tries to forecast the next month’ sa selected equity index price. The algorithm used to accomplish this task is Elastic Net.Once the predictions are generated from an out-of-sample subset, we elaborate a tactical portfolio allocation aiming to maximize the return of a different combination of classical allocation between bonds and equity,and a risk parity strategy. Finally, we evaluate those returns by comparing them to the benchmark.Ribeiro, Gonçalo SommerRUNGigli, Pierfrancesco2023-05-22T00:30:45Z2020-06-082020-05-222020-06-08T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/108603TID:202524264enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:53:01Zoai:run.unl.pt:10362/108603Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:41:11.908423Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularization |
title |
Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularization |
spellingShingle |
Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularization Gigli, Pierfrancesco Machine learning Elastic net Portfolio optimization Tactical allocation Investment strategy Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularization |
title_full |
Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularization |
title_fullStr |
Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularization |
title_full_unstemmed |
Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularization |
title_sort |
Tactical asset allocation and machine learning: empirical findings on weights portfolio optimization with elastic net regularization |
author |
Gigli, Pierfrancesco |
author_facet |
Gigli, Pierfrancesco |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ribeiro, Gonçalo Sommer RUN |
dc.contributor.author.fl_str_mv |
Gigli, Pierfrancesco |
dc.subject.por.fl_str_mv |
Machine learning Elastic net Portfolio optimization Tactical allocation Investment strategy Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Machine learning Elastic net Portfolio optimization Tactical allocation Investment strategy Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
This paper studies how a machine learning algorithm can generate tactical allocation which out performs returns fora pre-defined benchmark. We use three distinct and diverse data sets to implement the model which tries to forecast the next month’ sa selected equity index price. The algorithm used to accomplish this task is Elastic Net.Once the predictions are generated from an out-of-sample subset, we elaborate a tactical portfolio allocation aiming to maximize the return of a different combination of classical allocation between bonds and equity,and a risk parity strategy. Finally, we evaluate those returns by comparing them to the benchmark. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06-08 2020-05-22 2020-06-08T00:00:00Z 2023-05-22T00:30:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/108603 TID:202524264 |
url |
http://hdl.handle.net/10362/108603 |
identifier_str_mv |
TID:202524264 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138025619324928 |