Analysis of Inexact Trust-Region SQP Algorithms
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/13416 https://doi.org/10.1137/s1052623499361543 |
Resumo: | In this paper we extend the design of a class of composite–step trust–region SQP methods and their global convergence analysis to allow inexact problem information. The inexact problem information can result from iterative linear systems solves within the trust–region SQP method or from approximations of first–order derivatives. Accuracy requirements in our trust–region SQP methods are adjusted based on feasibility and optimality of the iterates. Our accuracy requirements are stated in general terms, but we show how they can be enforced using information that is already available in matrix–free implementations of SQP methods. In the absence of inexactness our global convergence theory is equal to that of Dennis, El–Alem, Maciel (SIAM J. Optim., 7 (1997), pp. 177–207). If all iterates are feasible, i.e., if all iterates satisfy the equality constraints, then our results are related to the known convergence analyses for trust–region methods with inexact gradient information for unconstrained optimization |
id |
RCAP_7758c1dece744ff29f3d5e7cd23af419 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/13416 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Analysis of Inexact Trust-Region SQP AlgorithmsNonlinear programmingTrust–region methodsInexact linear systems solversKrylov subspace methodsOptimal controlIn this paper we extend the design of a class of composite–step trust–region SQP methods and their global convergence analysis to allow inexact problem information. The inexact problem information can result from iterative linear systems solves within the trust–region SQP method or from approximations of first–order derivatives. Accuracy requirements in our trust–region SQP methods are adjusted based on feasibility and optimality of the iterates. Our accuracy requirements are stated in general terms, but we show how they can be enforced using information that is already available in matrix–free implementations of SQP methods. In the absence of inexactness our global convergence theory is equal to that of Dennis, El–Alem, Maciel (SIAM J. Optim., 7 (1997), pp. 177–207). If all iterates are feasible, i.e., if all iterates satisfy the equality constraints, then our results are related to the known convergence analyses for trust–region methods with inexact gradient information for unconstrained optimizationSociety for Industrial and Applied Mathematics2002info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/13416http://hdl.handle.net/10316/13416https://doi.org/10.1137/s1052623499361543engSIAM Journal on Optimization. 12:2 (2002) 283-3021052-6234Heinkenschloss, MatthiasVicente, Luís N.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-11-09T10:31:32Zoai:estudogeral.uc.pt:10316/13416Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:47.850773Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Analysis of Inexact Trust-Region SQP Algorithms |
title |
Analysis of Inexact Trust-Region SQP Algorithms |
spellingShingle |
Analysis of Inexact Trust-Region SQP Algorithms Heinkenschloss, Matthias Nonlinear programming Trust–region methods Inexact linear systems solvers Krylov subspace methods Optimal control |
title_short |
Analysis of Inexact Trust-Region SQP Algorithms |
title_full |
Analysis of Inexact Trust-Region SQP Algorithms |
title_fullStr |
Analysis of Inexact Trust-Region SQP Algorithms |
title_full_unstemmed |
Analysis of Inexact Trust-Region SQP Algorithms |
title_sort |
Analysis of Inexact Trust-Region SQP Algorithms |
author |
Heinkenschloss, Matthias |
author_facet |
Heinkenschloss, Matthias Vicente, Luís N. |
author_role |
author |
author2 |
Vicente, Luís N. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Heinkenschloss, Matthias Vicente, Luís N. |
dc.subject.por.fl_str_mv |
Nonlinear programming Trust–region methods Inexact linear systems solvers Krylov subspace methods Optimal control |
topic |
Nonlinear programming Trust–region methods Inexact linear systems solvers Krylov subspace methods Optimal control |
description |
In this paper we extend the design of a class of composite–step trust–region SQP methods and their global convergence analysis to allow inexact problem information. The inexact problem information can result from iterative linear systems solves within the trust–region SQP method or from approximations of first–order derivatives. Accuracy requirements in our trust–region SQP methods are adjusted based on feasibility and optimality of the iterates. Our accuracy requirements are stated in general terms, but we show how they can be enforced using information that is already available in matrix–free implementations of SQP methods. In the absence of inexactness our global convergence theory is equal to that of Dennis, El–Alem, Maciel (SIAM J. Optim., 7 (1997), pp. 177–207). If all iterates are feasible, i.e., if all iterates satisfy the equality constraints, then our results are related to the known convergence analyses for trust–region methods with inexact gradient information for unconstrained optimization |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/13416 http://hdl.handle.net/10316/13416 https://doi.org/10.1137/s1052623499361543 |
url |
http://hdl.handle.net/10316/13416 https://doi.org/10.1137/s1052623499361543 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
SIAM Journal on Optimization. 12:2 (2002) 283-302 1052-6234 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133898414751744 |