Analysis of Inexact Trust-Region SQP Algorithms

Detalhes bibliográficos
Autor(a) principal: Heinkenschloss, Matthias
Data de Publicação: 2002
Outros Autores: Vicente, Luís N.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/13416
https://doi.org/10.1137/s1052623499361543
Resumo: In this paper we extend the design of a class of composite–step trust–region SQP methods and their global convergence analysis to allow inexact problem information. The inexact problem information can result from iterative linear systems solves within the trust–region SQP method or from approximations of first–order derivatives. Accuracy requirements in our trust–region SQP methods are adjusted based on feasibility and optimality of the iterates. Our accuracy requirements are stated in general terms, but we show how they can be enforced using information that is already available in matrix–free implementations of SQP methods. In the absence of inexactness our global convergence theory is equal to that of Dennis, El–Alem, Maciel (SIAM J. Optim., 7 (1997), pp. 177–207). If all iterates are feasible, i.e., if all iterates satisfy the equality constraints, then our results are related to the known convergence analyses for trust–region methods with inexact gradient information for unconstrained optimization
id RCAP_7758c1dece744ff29f3d5e7cd23af419
oai_identifier_str oai:estudogeral.uc.pt:10316/13416
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Analysis of Inexact Trust-Region SQP AlgorithmsNonlinear programmingTrust–region methodsInexact linear systems solversKrylov subspace methodsOptimal controlIn this paper we extend the design of a class of composite–step trust–region SQP methods and their global convergence analysis to allow inexact problem information. The inexact problem information can result from iterative linear systems solves within the trust–region SQP method or from approximations of first–order derivatives. Accuracy requirements in our trust–region SQP methods are adjusted based on feasibility and optimality of the iterates. Our accuracy requirements are stated in general terms, but we show how they can be enforced using information that is already available in matrix–free implementations of SQP methods. In the absence of inexactness our global convergence theory is equal to that of Dennis, El–Alem, Maciel (SIAM J. Optim., 7 (1997), pp. 177–207). If all iterates are feasible, i.e., if all iterates satisfy the equality constraints, then our results are related to the known convergence analyses for trust–region methods with inexact gradient information for unconstrained optimizationSociety for Industrial and Applied Mathematics2002info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/13416http://hdl.handle.net/10316/13416https://doi.org/10.1137/s1052623499361543engSIAM Journal on Optimization. 12:2 (2002) 283-3021052-6234Heinkenschloss, MatthiasVicente, Luís N.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-11-09T10:31:32Zoai:estudogeral.uc.pt:10316/13416Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:47.850773Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Analysis of Inexact Trust-Region SQP Algorithms
title Analysis of Inexact Trust-Region SQP Algorithms
spellingShingle Analysis of Inexact Trust-Region SQP Algorithms
Heinkenschloss, Matthias
Nonlinear programming
Trust–region methods
Inexact linear systems solvers
Krylov subspace methods
Optimal control
title_short Analysis of Inexact Trust-Region SQP Algorithms
title_full Analysis of Inexact Trust-Region SQP Algorithms
title_fullStr Analysis of Inexact Trust-Region SQP Algorithms
title_full_unstemmed Analysis of Inexact Trust-Region SQP Algorithms
title_sort Analysis of Inexact Trust-Region SQP Algorithms
author Heinkenschloss, Matthias
author_facet Heinkenschloss, Matthias
Vicente, Luís N.
author_role author
author2 Vicente, Luís N.
author2_role author
dc.contributor.author.fl_str_mv Heinkenschloss, Matthias
Vicente, Luís N.
dc.subject.por.fl_str_mv Nonlinear programming
Trust–region methods
Inexact linear systems solvers
Krylov subspace methods
Optimal control
topic Nonlinear programming
Trust–region methods
Inexact linear systems solvers
Krylov subspace methods
Optimal control
description In this paper we extend the design of a class of composite–step trust–region SQP methods and their global convergence analysis to allow inexact problem information. The inexact problem information can result from iterative linear systems solves within the trust–region SQP method or from approximations of first–order derivatives. Accuracy requirements in our trust–region SQP methods are adjusted based on feasibility and optimality of the iterates. Our accuracy requirements are stated in general terms, but we show how they can be enforced using information that is already available in matrix–free implementations of SQP methods. In the absence of inexactness our global convergence theory is equal to that of Dennis, El–Alem, Maciel (SIAM J. Optim., 7 (1997), pp. 177–207). If all iterates are feasible, i.e., if all iterates satisfy the equality constraints, then our results are related to the known convergence analyses for trust–region methods with inexact gradient information for unconstrained optimization
publishDate 2002
dc.date.none.fl_str_mv 2002
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/13416
http://hdl.handle.net/10316/13416
https://doi.org/10.1137/s1052623499361543
url http://hdl.handle.net/10316/13416
https://doi.org/10.1137/s1052623499361543
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv SIAM Journal on Optimization. 12:2 (2002) 283-302
1052-6234
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Society for Industrial and Applied Mathematics
publisher.none.fl_str_mv Society for Industrial and Applied Mathematics
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133898414751744