Joint regression analysis applied to genotype stability evaluation over years

Detalhes bibliográficos
Autor(a) principal: Oliveira, Amilcar
Data de Publicação: 2008
Outros Autores: Oliveira, Teresa, Mejza, Stanislaw, Mexia, João Tiago
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.2/14667
Resumo: Most genotype differences connected with yield stability are due to genotype  environment interaction. The presence and dimension of this interaction are the factors that determine the performance of genotypes in distinct environments. The environmental factors, like annual rainfall, temperature, diseases or soil fertility, can only explain part of this interaction. Many statistical tools have been developed with the aim to explain the information contained in the GE interaction data matrix. In our work we use the Joint Regression Analysis (JRA), the Zig-Zag Algorithm to estimate the regression coefficients and the multiple comparison tests of Scheffé, Tukey and Bonferroni. We point out not just the limitations of the JRA when used year by year, but also genotype selection advantage from general JRA over years. Data of the Portuguese Plant Breeding Board were used to carry the year and over years analyses of yielding stability of 22 different genotypes of oat (Avena sativa L.) at six different locations in the years 2002, 2003 and 2004.
id RCAP_77ed7c91a17d34b3046c6510704b5f0e
oai_identifier_str oai:repositorioaberto.uab.pt:10400.2/14667
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Joint regression analysis applied to genotype stability evaluation over yearsGenotype stabilityJoint regression analysisOatODS::08:Trabalho Digno e Crescimento EconómicoMost genotype differences connected with yield stability are due to genotype  environment interaction. The presence and dimension of this interaction are the factors that determine the performance of genotypes in distinct environments. The environmental factors, like annual rainfall, temperature, diseases or soil fertility, can only explain part of this interaction. Many statistical tools have been developed with the aim to explain the information contained in the GE interaction data matrix. In our work we use the Joint Regression Analysis (JRA), the Zig-Zag Algorithm to estimate the regression coefficients and the multiple comparison tests of Scheffé, Tukey and Bonferroni. We point out not just the limitations of the JRA when used year by year, but also genotype selection advantage from general JRA over years. Data of the Portuguese Plant Breeding Board were used to carry the year and over years analyses of yielding stability of 22 different genotypes of oat (Avena sativa L.) at six different locations in the years 2002, 2003 and 2004.Biuletyn Instytutu Hodowli i Aklimatyzacji RoslinRepositório AbertoOliveira, AmilcarOliveira, TeresaMejza, StanislawMexia, João Tiago2023-07-31T12:09:36Z20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/14667enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T15:47:51Zoai:repositorioaberto.uab.pt:10400.2/14667Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:53:26.969123Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Joint regression analysis applied to genotype stability evaluation over years
title Joint regression analysis applied to genotype stability evaluation over years
spellingShingle Joint regression analysis applied to genotype stability evaluation over years
Oliveira, Amilcar
Genotype stability
Joint regression analysis
Oat
ODS::08:Trabalho Digno e Crescimento Económico
title_short Joint regression analysis applied to genotype stability evaluation over years
title_full Joint regression analysis applied to genotype stability evaluation over years
title_fullStr Joint regression analysis applied to genotype stability evaluation over years
title_full_unstemmed Joint regression analysis applied to genotype stability evaluation over years
title_sort Joint regression analysis applied to genotype stability evaluation over years
author Oliveira, Amilcar
author_facet Oliveira, Amilcar
Oliveira, Teresa
Mejza, Stanislaw
Mexia, João Tiago
author_role author
author2 Oliveira, Teresa
Mejza, Stanislaw
Mexia, João Tiago
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório Aberto
dc.contributor.author.fl_str_mv Oliveira, Amilcar
Oliveira, Teresa
Mejza, Stanislaw
Mexia, João Tiago
dc.subject.por.fl_str_mv Genotype stability
Joint regression analysis
Oat
ODS::08:Trabalho Digno e Crescimento Económico
topic Genotype stability
Joint regression analysis
Oat
ODS::08:Trabalho Digno e Crescimento Económico
description Most genotype differences connected with yield stability are due to genotype  environment interaction. The presence and dimension of this interaction are the factors that determine the performance of genotypes in distinct environments. The environmental factors, like annual rainfall, temperature, diseases or soil fertility, can only explain part of this interaction. Many statistical tools have been developed with the aim to explain the information contained in the GE interaction data matrix. In our work we use the Joint Regression Analysis (JRA), the Zig-Zag Algorithm to estimate the regression coefficients and the multiple comparison tests of Scheffé, Tukey and Bonferroni. We point out not just the limitations of the JRA when used year by year, but also genotype selection advantage from general JRA over years. Data of the Portuguese Plant Breeding Board were used to carry the year and over years analyses of yielding stability of 22 different genotypes of oat (Avena sativa L.) at six different locations in the years 2002, 2003 and 2004.
publishDate 2008
dc.date.none.fl_str_mv 2008
2008-01-01T00:00:00Z
2023-07-31T12:09:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.2/14667
url http://hdl.handle.net/10400.2/14667
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Biuletyn Instytutu Hodowli i Aklimatyzacji Roslin
publisher.none.fl_str_mv Biuletyn Instytutu Hodowli i Aklimatyzacji Roslin
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1817550335321833472