Joint regression analysis applied to genotype stability evaluation over years
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.2/14667 |
Resumo: | Most genotype differences connected with yield stability are due to genotype environment interaction. The presence and dimension of this interaction are the factors that determine the performance of genotypes in distinct environments. The environmental factors, like annual rainfall, temperature, diseases or soil fertility, can only explain part of this interaction. Many statistical tools have been developed with the aim to explain the information contained in the GE interaction data matrix. In our work we use the Joint Regression Analysis (JRA), the Zig-Zag Algorithm to estimate the regression coefficients and the multiple comparison tests of Scheffé, Tukey and Bonferroni. We point out not just the limitations of the JRA when used year by year, but also genotype selection advantage from general JRA over years. Data of the Portuguese Plant Breeding Board were used to carry the year and over years analyses of yielding stability of 22 different genotypes of oat (Avena sativa L.) at six different locations in the years 2002, 2003 and 2004. |
id |
RCAP_77ed7c91a17d34b3046c6510704b5f0e |
---|---|
oai_identifier_str |
oai:repositorioaberto.uab.pt:10400.2/14667 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Joint regression analysis applied to genotype stability evaluation over yearsGenotype stabilityJoint regression analysisOatODS::08:Trabalho Digno e Crescimento EconómicoMost genotype differences connected with yield stability are due to genotype environment interaction. The presence and dimension of this interaction are the factors that determine the performance of genotypes in distinct environments. The environmental factors, like annual rainfall, temperature, diseases or soil fertility, can only explain part of this interaction. Many statistical tools have been developed with the aim to explain the information contained in the GE interaction data matrix. In our work we use the Joint Regression Analysis (JRA), the Zig-Zag Algorithm to estimate the regression coefficients and the multiple comparison tests of Scheffé, Tukey and Bonferroni. We point out not just the limitations of the JRA when used year by year, but also genotype selection advantage from general JRA over years. Data of the Portuguese Plant Breeding Board were used to carry the year and over years analyses of yielding stability of 22 different genotypes of oat (Avena sativa L.) at six different locations in the years 2002, 2003 and 2004.Biuletyn Instytutu Hodowli i Aklimatyzacji RoslinRepositório AbertoOliveira, AmilcarOliveira, TeresaMejza, StanislawMexia, João Tiago2023-07-31T12:09:36Z20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/14667enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T15:47:51Zoai:repositorioaberto.uab.pt:10400.2/14667Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:53:26.969123Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Joint regression analysis applied to genotype stability evaluation over years |
title |
Joint regression analysis applied to genotype stability evaluation over years |
spellingShingle |
Joint regression analysis applied to genotype stability evaluation over years Oliveira, Amilcar Genotype stability Joint regression analysis Oat ODS::08:Trabalho Digno e Crescimento Económico |
title_short |
Joint regression analysis applied to genotype stability evaluation over years |
title_full |
Joint regression analysis applied to genotype stability evaluation over years |
title_fullStr |
Joint regression analysis applied to genotype stability evaluation over years |
title_full_unstemmed |
Joint regression analysis applied to genotype stability evaluation over years |
title_sort |
Joint regression analysis applied to genotype stability evaluation over years |
author |
Oliveira, Amilcar |
author_facet |
Oliveira, Amilcar Oliveira, Teresa Mejza, Stanislaw Mexia, João Tiago |
author_role |
author |
author2 |
Oliveira, Teresa Mejza, Stanislaw Mexia, João Tiago |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório Aberto |
dc.contributor.author.fl_str_mv |
Oliveira, Amilcar Oliveira, Teresa Mejza, Stanislaw Mexia, João Tiago |
dc.subject.por.fl_str_mv |
Genotype stability Joint regression analysis Oat ODS::08:Trabalho Digno e Crescimento Económico |
topic |
Genotype stability Joint regression analysis Oat ODS::08:Trabalho Digno e Crescimento Económico |
description |
Most genotype differences connected with yield stability are due to genotype environment interaction. The presence and dimension of this interaction are the factors that determine the performance of genotypes in distinct environments. The environmental factors, like annual rainfall, temperature, diseases or soil fertility, can only explain part of this interaction. Many statistical tools have been developed with the aim to explain the information contained in the GE interaction data matrix. In our work we use the Joint Regression Analysis (JRA), the Zig-Zag Algorithm to estimate the regression coefficients and the multiple comparison tests of Scheffé, Tukey and Bonferroni. We point out not just the limitations of the JRA when used year by year, but also genotype selection advantage from general JRA over years. Data of the Portuguese Plant Breeding Board were used to carry the year and over years analyses of yielding stability of 22 different genotypes of oat (Avena sativa L.) at six different locations in the years 2002, 2003 and 2004. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 2008-01-01T00:00:00Z 2023-07-31T12:09:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.2/14667 |
url |
http://hdl.handle.net/10400.2/14667 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Biuletyn Instytutu Hodowli i Aklimatyzacji Roslin |
publisher.none.fl_str_mv |
Biuletyn Instytutu Hodowli i Aklimatyzacji Roslin |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817550335321833472 |