Complemented congruences on double Ockham algebras
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/11551 |
Resumo: | For $n ∈ \mathbb{N}$ and $m ∈ \mathbb{N}_0$, an algebra $L = (L, ∧, ∨, f, g, 0, 1)$ of type $(2, 2, 1, 1, 0, 0)$ is said to be a double $K_{n,m}$-algebra, if L is a double Ockham algebra that satisfies the identities $f^{2n+m} = f^m, g^{2n+m} = g^m, fg = g^{2zn} and gf = f^{2zn}, where z is the smallest natural number greater than or equal to m/2n. In this papaer we describe the complement (when it exists) of a principal congruence and, using this description, we also determine when the complement exists. |
id |
RCAP_783c7c022fd68e4ffb4fa514bd74b3ec |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/11551 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Complemented congruences on double Ockham algebrasDouble Ockham algebrasCongruencesDistributive latticesOckham algebrasDouble algebrasScience & TechnologyFor $n ∈ \mathbb{N}$ and $m ∈ \mathbb{N}_0$, an algebra $L = (L, ∧, ∨, f, g, 0, 1)$ of type $(2, 2, 1, 1, 0, 0)$ is said to be a double $K_{n,m}$-algebra, if L is a double Ockham algebra that satisfies the identities $f^{2n+m} = f^m, g^{2n+m} = g^m, fg = g^{2zn} and gf = f^{2zn}, where z is the smallest natural number greater than or equal to m/2n. In this papaer we describe the complement (when it exists) of a principal congruence and, using this description, we also determine when the complement exists.Fundação para a Ciência e a Tecnologia (FCT) - programa POCTISpringer VerlagUniversidade do MinhoMendes, C.2007-022007-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/11551eng"Algebra Universalis." ISSN 0002-5240. 56:1 (Fev. 2007) 1-16.0002-524010.1007/s00012-006-1975-zhttp://www.springerlink.com/content/6n6hn2574l4l5521/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:20:28Zoai:repositorium.sdum.uminho.pt:1822/11551Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:13:36.416625Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Complemented congruences on double Ockham algebras |
title |
Complemented congruences on double Ockham algebras |
spellingShingle |
Complemented congruences on double Ockham algebras Mendes, C. Double Ockham algebras Congruences Distributive lattices Ockham algebras Double algebras Science & Technology |
title_short |
Complemented congruences on double Ockham algebras |
title_full |
Complemented congruences on double Ockham algebras |
title_fullStr |
Complemented congruences on double Ockham algebras |
title_full_unstemmed |
Complemented congruences on double Ockham algebras |
title_sort |
Complemented congruences on double Ockham algebras |
author |
Mendes, C. |
author_facet |
Mendes, C. |
author_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Mendes, C. |
dc.subject.por.fl_str_mv |
Double Ockham algebras Congruences Distributive lattices Ockham algebras Double algebras Science & Technology |
topic |
Double Ockham algebras Congruences Distributive lattices Ockham algebras Double algebras Science & Technology |
description |
For $n ∈ \mathbb{N}$ and $m ∈ \mathbb{N}_0$, an algebra $L = (L, ∧, ∨, f, g, 0, 1)$ of type $(2, 2, 1, 1, 0, 0)$ is said to be a double $K_{n,m}$-algebra, if L is a double Ockham algebra that satisfies the identities $f^{2n+m} = f^m, g^{2n+m} = g^m, fg = g^{2zn} and gf = f^{2zn}, where z is the smallest natural number greater than or equal to m/2n. In this papaer we describe the complement (when it exists) of a principal congruence and, using this description, we also determine when the complement exists. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-02 2007-02-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/11551 |
url |
http://hdl.handle.net/1822/11551 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Algebra Universalis." ISSN 0002-5240. 56:1 (Fev. 2007) 1-16. 0002-5240 10.1007/s00012-006-1975-z http://www.springerlink.com/content/6n6hn2574l4l5521/ |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132575865765889 |