Complemented congruences on double Ockham algebras

Detalhes bibliográficos
Autor(a) principal: Mendes, C.
Data de Publicação: 2007
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/11551
Resumo: For $n ∈ \mathbb{N}$ and $m ∈ \mathbb{N}_0$, an algebra $L = (L, ∧, ∨, f, g, 0, 1)$ of type $(2, 2, 1, 1, 0, 0)$ is said to be a double $K_{n,m}$-algebra, if L is a double Ockham algebra that satisfies the identities $f^{2n+m} = f^m, g^{2n+m} = g^m, fg = g^{2zn} and gf = f^{2zn}, where z is the smallest natural number greater than or equal to m/2n. In this papaer we describe the complement (when it exists) of a principal congruence and, using this description, we also determine when the complement exists.
id RCAP_783c7c022fd68e4ffb4fa514bd74b3ec
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/11551
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Complemented congruences on double Ockham algebrasDouble Ockham algebrasCongruencesDistributive latticesOckham algebrasDouble algebrasScience & TechnologyFor $n ∈ \mathbb{N}$ and $m ∈ \mathbb{N}_0$, an algebra $L = (L, ∧, ∨, f, g, 0, 1)$ of type $(2, 2, 1, 1, 0, 0)$ is said to be a double $K_{n,m}$-algebra, if L is a double Ockham algebra that satisfies the identities $f^{2n+m} = f^m, g^{2n+m} = g^m, fg = g^{2zn} and gf = f^{2zn}, where z is the smallest natural number greater than or equal to m/2n. In this papaer we describe the complement (when it exists) of a principal congruence and, using this description, we also determine when the complement exists.Fundação para a Ciência e a Tecnologia (FCT) - programa POCTISpringer VerlagUniversidade do MinhoMendes, C.2007-022007-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/11551eng"Algebra Universalis." ISSN 0002-5240. 56:1 (Fev. 2007) 1-16.0002-524010.1007/s00012-006-1975-zhttp://www.springerlink.com/content/6n6hn2574l4l5521/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:20:28Zoai:repositorium.sdum.uminho.pt:1822/11551Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:13:36.416625Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Complemented congruences on double Ockham algebras
title Complemented congruences on double Ockham algebras
spellingShingle Complemented congruences on double Ockham algebras
Mendes, C.
Double Ockham algebras
Congruences
Distributive lattices
Ockham algebras
Double algebras
Science & Technology
title_short Complemented congruences on double Ockham algebras
title_full Complemented congruences on double Ockham algebras
title_fullStr Complemented congruences on double Ockham algebras
title_full_unstemmed Complemented congruences on double Ockham algebras
title_sort Complemented congruences on double Ockham algebras
author Mendes, C.
author_facet Mendes, C.
author_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Mendes, C.
dc.subject.por.fl_str_mv Double Ockham algebras
Congruences
Distributive lattices
Ockham algebras
Double algebras
Science & Technology
topic Double Ockham algebras
Congruences
Distributive lattices
Ockham algebras
Double algebras
Science & Technology
description For $n ∈ \mathbb{N}$ and $m ∈ \mathbb{N}_0$, an algebra $L = (L, ∧, ∨, f, g, 0, 1)$ of type $(2, 2, 1, 1, 0, 0)$ is said to be a double $K_{n,m}$-algebra, if L is a double Ockham algebra that satisfies the identities $f^{2n+m} = f^m, g^{2n+m} = g^m, fg = g^{2zn} and gf = f^{2zn}, where z is the smallest natural number greater than or equal to m/2n. In this papaer we describe the complement (when it exists) of a principal congruence and, using this description, we also determine when the complement exists.
publishDate 2007
dc.date.none.fl_str_mv 2007-02
2007-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/11551
url http://hdl.handle.net/1822/11551
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv "Algebra Universalis." ISSN 0002-5240. 56:1 (Fev. 2007) 1-16.
0002-5240
10.1007/s00012-006-1975-z
http://www.springerlink.com/content/6n6hn2574l4l5521/
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132575865765889