Carbidopa Alters Tryptophan Metabolism in Breast Cancer and Melanoma Cells Leading to the Formation of Indole-3-Acetonitrile, a Pro-Proliferative Metabolite

Detalhes bibliográficos
Autor(a) principal: Duarte, D.
Data de Publicação: 2019
Outros Autores: Amaro, F., Silva, I., Silva, D., Fresco, P., Oliveira, José Carlos, REGUENGO, HENRIQUE, Gonçalves, J., Vale, N.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.16/2355
Resumo: Carbidopa is used for the treatment of Parkinson's disease (PD) as an inhibitor of DOPA decarboxylase, and PD patients taking carbidopa have a lower incidence of various tumors, except for breast cancer and melanoma. Recently, it was shown that carbidopa inhibits tryptophan-2,3-dioxygenase (TDO) and kynureninase enzymes. In the present study, the effect of carbidopa on the viability and metabolic profile of breast cancer MCF-7 and melanoma A375 cells was investigated. Carbidopa was not effective in inhibiting MCF-7 and A375 proliferation. Liquid chromatography and mass spectrometry revealed a new compound, identified as indole-3-acetonitrile (IAN), which promoted a concentration-dependent increase in the viability of both cell lines. The results suggest that treatment with carbidopa may alter tryptophan (Trp) metabolism in breast cancer and melanoma leading to the formation of a pro-proliferative Trp metabolite, which may contribute to its failure in reducing breast cancers and melanoma incidence in PD patients taking carbidopa.
id RCAP_78523b8c737d07f0a6bc209c5ea834eb
oai_identifier_str oai:repositorio.chporto.pt:10400.16/2355
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Carbidopa Alters Tryptophan Metabolism in Breast Cancer and Melanoma Cells Leading to the Formation of Indole-3-Acetonitrile, a Pro-Proliferative MetaboliteA375 cell line; MCF-7 cell linecarbidopaindole-3-acetonitriletryptophanCarbidopa is used for the treatment of Parkinson's disease (PD) as an inhibitor of DOPA decarboxylase, and PD patients taking carbidopa have a lower incidence of various tumors, except for breast cancer and melanoma. Recently, it was shown that carbidopa inhibits tryptophan-2,3-dioxygenase (TDO) and kynureninase enzymes. In the present study, the effect of carbidopa on the viability and metabolic profile of breast cancer MCF-7 and melanoma A375 cells was investigated. Carbidopa was not effective in inhibiting MCF-7 and A375 proliferation. Liquid chromatography and mass spectrometry revealed a new compound, identified as indole-3-acetonitrile (IAN), which promoted a concentration-dependent increase in the viability of both cell lines. The results suggest that treatment with carbidopa may alter tryptophan (Trp) metabolism in breast cancer and melanoma leading to the formation of a pro-proliferative Trp metabolite, which may contribute to its failure in reducing breast cancers and melanoma incidence in PD patients taking carbidopa.This work was financed by FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operational Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT, in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274).” NV thanks FCT for IF position, Fundação Manuel António da Mota (FMAM, Portugal) for support. The contents of this report are solely the responsibility of the authors and do not necessarily represent the official views of the FCT and FMAMMDPIRepositório Científico do Centro Hospitalar Universitário de Santo AntónioDuarte, D.Amaro, F.Silva, I.Silva, D.Fresco, P.Oliveira, José CarlosREGUENGO, HENRIQUEGonçalves, J.Vale, N.2020-04-16T15:15:11Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.16/2355engDuarte D, Amaro F, Silva I, et al. Carbidopa Alters Tryptophan Metabolism in Breast Cancer and Melanoma Cells Leading to the Formation of Indole-3-Acetonitrile, a Pro-Proliferative Metabolite. Biomolecules. 2019;9(9):409. Published 2019 Aug 24. doi:10.3390/biom90904092218-273X10.3390/biom9090409info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-20T11:00:27Zoai:repositorio.chporto.pt:10400.16/2355Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:38:33.858034Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Carbidopa Alters Tryptophan Metabolism in Breast Cancer and Melanoma Cells Leading to the Formation of Indole-3-Acetonitrile, a Pro-Proliferative Metabolite
title Carbidopa Alters Tryptophan Metabolism in Breast Cancer and Melanoma Cells Leading to the Formation of Indole-3-Acetonitrile, a Pro-Proliferative Metabolite
spellingShingle Carbidopa Alters Tryptophan Metabolism in Breast Cancer and Melanoma Cells Leading to the Formation of Indole-3-Acetonitrile, a Pro-Proliferative Metabolite
Duarte, D.
A375 cell line; MCF-7 cell line
carbidopa
indole-3-acetonitrile
tryptophan
title_short Carbidopa Alters Tryptophan Metabolism in Breast Cancer and Melanoma Cells Leading to the Formation of Indole-3-Acetonitrile, a Pro-Proliferative Metabolite
title_full Carbidopa Alters Tryptophan Metabolism in Breast Cancer and Melanoma Cells Leading to the Formation of Indole-3-Acetonitrile, a Pro-Proliferative Metabolite
title_fullStr Carbidopa Alters Tryptophan Metabolism in Breast Cancer and Melanoma Cells Leading to the Formation of Indole-3-Acetonitrile, a Pro-Proliferative Metabolite
title_full_unstemmed Carbidopa Alters Tryptophan Metabolism in Breast Cancer and Melanoma Cells Leading to the Formation of Indole-3-Acetonitrile, a Pro-Proliferative Metabolite
title_sort Carbidopa Alters Tryptophan Metabolism in Breast Cancer and Melanoma Cells Leading to the Formation of Indole-3-Acetonitrile, a Pro-Proliferative Metabolite
author Duarte, D.
author_facet Duarte, D.
Amaro, F.
Silva, I.
Silva, D.
Fresco, P.
Oliveira, José Carlos
REGUENGO, HENRIQUE
Gonçalves, J.
Vale, N.
author_role author
author2 Amaro, F.
Silva, I.
Silva, D.
Fresco, P.
Oliveira, José Carlos
REGUENGO, HENRIQUE
Gonçalves, J.
Vale, N.
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Centro Hospitalar Universitário de Santo António
dc.contributor.author.fl_str_mv Duarte, D.
Amaro, F.
Silva, I.
Silva, D.
Fresco, P.
Oliveira, José Carlos
REGUENGO, HENRIQUE
Gonçalves, J.
Vale, N.
dc.subject.por.fl_str_mv A375 cell line; MCF-7 cell line
carbidopa
indole-3-acetonitrile
tryptophan
topic A375 cell line; MCF-7 cell line
carbidopa
indole-3-acetonitrile
tryptophan
description Carbidopa is used for the treatment of Parkinson's disease (PD) as an inhibitor of DOPA decarboxylase, and PD patients taking carbidopa have a lower incidence of various tumors, except for breast cancer and melanoma. Recently, it was shown that carbidopa inhibits tryptophan-2,3-dioxygenase (TDO) and kynureninase enzymes. In the present study, the effect of carbidopa on the viability and metabolic profile of breast cancer MCF-7 and melanoma A375 cells was investigated. Carbidopa was not effective in inhibiting MCF-7 and A375 proliferation. Liquid chromatography and mass spectrometry revealed a new compound, identified as indole-3-acetonitrile (IAN), which promoted a concentration-dependent increase in the viability of both cell lines. The results suggest that treatment with carbidopa may alter tryptophan (Trp) metabolism in breast cancer and melanoma leading to the formation of a pro-proliferative Trp metabolite, which may contribute to its failure in reducing breast cancers and melanoma incidence in PD patients taking carbidopa.
publishDate 2019
dc.date.none.fl_str_mv 2019
2019-01-01T00:00:00Z
2020-04-16T15:15:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.16/2355
url http://hdl.handle.net/10400.16/2355
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Duarte D, Amaro F, Silva I, et al. Carbidopa Alters Tryptophan Metabolism in Breast Cancer and Melanoma Cells Leading to the Formation of Indole-3-Acetonitrile, a Pro-Proliferative Metabolite. Biomolecules. 2019;9(9):409. Published 2019 Aug 24. doi:10.3390/biom9090409
2218-273X
10.3390/biom9090409
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133646447181824