Risk assessment for progression of Diabetic Nephropathy based on patient history analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.26/47587 |
Resumo: | A nefropatia diabética (ND) é uma das complicações mais comuns em doentes com diabetes. Trata-se de uma doença crónica que afeta progressivamente os rins, podendo resultar numa insuficiência renal. A digitalização permitiu aos hospitais armazenar as informações dos doentes em registos de saúde eletrónicos (RSE). A aplicação de algoritmos de Machine Learning (ML) a estes dados pode permitir a previsão do risco na evolução destes doentes, conduzindo a uma melhor gestão da doença. O principal objetivo deste trabalho é criar um modelo preditivo que tire partido do historial do doente presente nos RSE. Foi aplicado neste trabalho o maior conjunto de dados de doentes portugueses com DN, seguidos durante 22 anos pela Associação Protetora dos Diabéticos de Portugal (APDP). Foi desenvolvida uma abordagem longitudinal na fase de pré-processamento de dados, permitindo que estes fossem servidos como entrada para dezasseis algoritmos de ML distintos. Após a avaliação e análise dos respetivos resultados, o Light Gradient Boosting Machine foi identificado como o melhor modelo, apresentando boas capacidades de previsão. Esta conclusão foi apoiada não só pela avaliação de várias métricas de classificação em dados de treino, teste e validação, mas também pela avaliação do seu desempenho por cada estádio da doença. Para além disso, os modelos foram analisados utilizando gráficos de feature ranking e através de análise estatística. Como complemento, são ainda apresentados a interpretabilidade dos resultados através do método SHAP, assim como a distribuição do modelo utilizando o Gradio e os servidores da Hugging Face. Através da integração de técnicas ML, de um método de interpretação e de uma aplicação Web que fornece acesso ao modelo, este estudo oferece uma abordagem potencialmente eficaz para antecipar a evolução da ND, permitindo que os profissionais de saúde tomem decisões informadas para a prestação de cuidados personalizados e gestão da doença. |
id |
RCAP_79016d83b5523cd2d8ccb70587425d81 |
---|---|
oai_identifier_str |
oai:comum.rcaap.pt:10400.26/47587 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Risk assessment for progression of Diabetic Nephropathy based on patient history analysisNefropatia diabéticaRegistos de saúde eletrónicosMachine learningAnálise longitudinalPrevisão de riscoA nefropatia diabética (ND) é uma das complicações mais comuns em doentes com diabetes. Trata-se de uma doença crónica que afeta progressivamente os rins, podendo resultar numa insuficiência renal. A digitalização permitiu aos hospitais armazenar as informações dos doentes em registos de saúde eletrónicos (RSE). A aplicação de algoritmos de Machine Learning (ML) a estes dados pode permitir a previsão do risco na evolução destes doentes, conduzindo a uma melhor gestão da doença. O principal objetivo deste trabalho é criar um modelo preditivo que tire partido do historial do doente presente nos RSE. Foi aplicado neste trabalho o maior conjunto de dados de doentes portugueses com DN, seguidos durante 22 anos pela Associação Protetora dos Diabéticos de Portugal (APDP). Foi desenvolvida uma abordagem longitudinal na fase de pré-processamento de dados, permitindo que estes fossem servidos como entrada para dezasseis algoritmos de ML distintos. Após a avaliação e análise dos respetivos resultados, o Light Gradient Boosting Machine foi identificado como o melhor modelo, apresentando boas capacidades de previsão. Esta conclusão foi apoiada não só pela avaliação de várias métricas de classificação em dados de treino, teste e validação, mas também pela avaliação do seu desempenho por cada estádio da doença. Para além disso, os modelos foram analisados utilizando gráficos de feature ranking e através de análise estatística. Como complemento, são ainda apresentados a interpretabilidade dos resultados através do método SHAP, assim como a distribuição do modelo utilizando o Gradio e os servidores da Hugging Face. Através da integração de técnicas ML, de um método de interpretação e de uma aplicação Web que fornece acesso ao modelo, este estudo oferece uma abordagem potencialmente eficaz para antecipar a evolução da ND, permitindo que os profissionais de saúde tomem decisões informadas para a prestação de cuidados personalizados e gestão da doença.Paredes, Simão Pedro Mendes Cruz ReisRepositório ComumMesquita, Francisco Gabriel Fonseca2023-10-26T16:10:02Z2023-10-132023-09-202023-10-13T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.26/47587TID:203378024enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T02:16:13Zoai:comum.rcaap.pt:10400.26/47587Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:26:18.154322Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Risk assessment for progression of Diabetic Nephropathy based on patient history analysis |
title |
Risk assessment for progression of Diabetic Nephropathy based on patient history analysis |
spellingShingle |
Risk assessment for progression of Diabetic Nephropathy based on patient history analysis Mesquita, Francisco Gabriel Fonseca Nefropatia diabética Registos de saúde eletrónicos Machine learning Análise longitudinal Previsão de risco |
title_short |
Risk assessment for progression of Diabetic Nephropathy based on patient history analysis |
title_full |
Risk assessment for progression of Diabetic Nephropathy based on patient history analysis |
title_fullStr |
Risk assessment for progression of Diabetic Nephropathy based on patient history analysis |
title_full_unstemmed |
Risk assessment for progression of Diabetic Nephropathy based on patient history analysis |
title_sort |
Risk assessment for progression of Diabetic Nephropathy based on patient history analysis |
author |
Mesquita, Francisco Gabriel Fonseca |
author_facet |
Mesquita, Francisco Gabriel Fonseca |
author_role |
author |
dc.contributor.none.fl_str_mv |
Paredes, Simão Pedro Mendes Cruz Reis Repositório Comum |
dc.contributor.author.fl_str_mv |
Mesquita, Francisco Gabriel Fonseca |
dc.subject.por.fl_str_mv |
Nefropatia diabética Registos de saúde eletrónicos Machine learning Análise longitudinal Previsão de risco |
topic |
Nefropatia diabética Registos de saúde eletrónicos Machine learning Análise longitudinal Previsão de risco |
description |
A nefropatia diabética (ND) é uma das complicações mais comuns em doentes com diabetes. Trata-se de uma doença crónica que afeta progressivamente os rins, podendo resultar numa insuficiência renal. A digitalização permitiu aos hospitais armazenar as informações dos doentes em registos de saúde eletrónicos (RSE). A aplicação de algoritmos de Machine Learning (ML) a estes dados pode permitir a previsão do risco na evolução destes doentes, conduzindo a uma melhor gestão da doença. O principal objetivo deste trabalho é criar um modelo preditivo que tire partido do historial do doente presente nos RSE. Foi aplicado neste trabalho o maior conjunto de dados de doentes portugueses com DN, seguidos durante 22 anos pela Associação Protetora dos Diabéticos de Portugal (APDP). Foi desenvolvida uma abordagem longitudinal na fase de pré-processamento de dados, permitindo que estes fossem servidos como entrada para dezasseis algoritmos de ML distintos. Após a avaliação e análise dos respetivos resultados, o Light Gradient Boosting Machine foi identificado como o melhor modelo, apresentando boas capacidades de previsão. Esta conclusão foi apoiada não só pela avaliação de várias métricas de classificação em dados de treino, teste e validação, mas também pela avaliação do seu desempenho por cada estádio da doença. Para além disso, os modelos foram analisados utilizando gráficos de feature ranking e através de análise estatística. Como complemento, são ainda apresentados a interpretabilidade dos resultados através do método SHAP, assim como a distribuição do modelo utilizando o Gradio e os servidores da Hugging Face. Através da integração de técnicas ML, de um método de interpretação e de uma aplicação Web que fornece acesso ao modelo, este estudo oferece uma abordagem potencialmente eficaz para antecipar a evolução da ND, permitindo que os profissionais de saúde tomem decisões informadas para a prestação de cuidados personalizados e gestão da doença. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10-26T16:10:02Z 2023-10-13 2023-09-20 2023-10-13T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.26/47587 TID:203378024 |
url |
http://hdl.handle.net/10400.26/47587 |
identifier_str_mv |
TID:203378024 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134144715816960 |