Estimation and incommutativity in mixed models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/9069 |
Resumo: | In this paper we present a treatment for the estimation of variance components and estimable vectors in linear mixed models in which the relation matrices may not commute. To overcome this difficulty, we partition the mixed model in sub-models using orthogonal matrices. In addition, we obtain confidence regions and derive tests of hypothesis for the variance components. A numerical example is included. There we illustrate the estimation of the variance components using our treatment and compare the obtained estimates with the ones obtained by the ANOVA method. Besides this, we also present the restricted and unrestricted maximum likelihood estimates. |
id |
RCAP_790b563ddfe40b0a247e00acad3f2e4d |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/9069 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Estimation and incommutativity in mixed modelsInferenceMixed modelsVariance componentsIn this paper we present a treatment for the estimation of variance components and estimable vectors in linear mixed models in which the relation matrices may not commute. To overcome this difficulty, we partition the mixed model in sub-models using orthogonal matrices. In addition, we obtain confidence regions and derive tests of hypothesis for the variance components. A numerical example is included. There we illustrate the estimation of the variance components using our treatment and compare the obtained estimates with the ones obtained by the ANOVA method. Besides this, we also present the restricted and unrestricted maximum likelihood estimates.uBibliorumFerreira, DárioFerreira, Sandra S.Nunes, CéliaFonseca, MiguelSilva, AdilsonMexia, João T.2020-02-06T15:35:46Z20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/9069eng10.1016/j.jmva.2017.07.002info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:49:42Zoai:ubibliorum.ubi.pt:10400.6/9069Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:49:18.539088Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Estimation and incommutativity in mixed models |
title |
Estimation and incommutativity in mixed models |
spellingShingle |
Estimation and incommutativity in mixed models Ferreira, Dário Inference Mixed models Variance components |
title_short |
Estimation and incommutativity in mixed models |
title_full |
Estimation and incommutativity in mixed models |
title_fullStr |
Estimation and incommutativity in mixed models |
title_full_unstemmed |
Estimation and incommutativity in mixed models |
title_sort |
Estimation and incommutativity in mixed models |
author |
Ferreira, Dário |
author_facet |
Ferreira, Dário Ferreira, Sandra S. Nunes, Célia Fonseca, Miguel Silva, Adilson Mexia, João T. |
author_role |
author |
author2 |
Ferreira, Sandra S. Nunes, Célia Fonseca, Miguel Silva, Adilson Mexia, João T. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
uBibliorum |
dc.contributor.author.fl_str_mv |
Ferreira, Dário Ferreira, Sandra S. Nunes, Célia Fonseca, Miguel Silva, Adilson Mexia, João T. |
dc.subject.por.fl_str_mv |
Inference Mixed models Variance components |
topic |
Inference Mixed models Variance components |
description |
In this paper we present a treatment for the estimation of variance components and estimable vectors in linear mixed models in which the relation matrices may not commute. To overcome this difficulty, we partition the mixed model in sub-models using orthogonal matrices. In addition, we obtain confidence regions and derive tests of hypothesis for the variance components. A numerical example is included. There we illustrate the estimation of the variance components using our treatment and compare the obtained estimates with the ones obtained by the ANOVA method. Besides this, we also present the restricted and unrestricted maximum likelihood estimates. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2017-01-01T00:00:00Z 2020-02-06T15:35:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/9069 |
url |
http://hdl.handle.net/10400.6/9069 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1016/j.jmva.2017.07.002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136385813184512 |