An alternative proof on higher order derivatives of a multilinear map

Detalhes bibliográficos
Autor(a) principal: Carvalho, Sonia
Data de Publicação: 2020
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.21/12665
Resumo: As a generalization of the formulas proved by Bhatia, Grover and Jain (Derivatives of tensor powers and their norms. Electron J Linear Algebra. 2013;26:604-619), in recent papers (The kth derivative of the immannant and the chi-symmetric tensor power of an operator. Electron J Linear Algebra. 2014;27:Article 18, On derivatives and norms of generalized matrix functions and respective symmetric powers. Electron J Linear Algebra. 2015;30:Article 22) Carvalho and Freitas obtained formulas for directional derivatives, of all orders, for generalized matrix functions and for every symmetric tensor power associated with a character xi of a subgroup G of the symmetric group S-m. Throughout our work, we used some well-known formulas for the derivatives of all orders of a multilinear map, since the maps that we studied are all multilinear. In this paper, we intend to present an alternative proof of these formulas, using the multilinearity argument.
id RCAP_79b2ff82f1832880a626e3c0014cbb50
oai_identifier_str oai:repositorio.ipl.pt:10400.21/12665
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling An alternative proof on higher order derivatives of a multilinear mapMultilinear mapHigher order derivativesMultilinearity argumentAs a generalization of the formulas proved by Bhatia, Grover and Jain (Derivatives of tensor powers and their norms. Electron J Linear Algebra. 2013;26:604-619), in recent papers (The kth derivative of the immannant and the chi-symmetric tensor power of an operator. Electron J Linear Algebra. 2014;27:Article 18, On derivatives and norms of generalized matrix functions and respective symmetric powers. Electron J Linear Algebra. 2015;30:Article 22) Carvalho and Freitas obtained formulas for directional derivatives, of all orders, for generalized matrix functions and for every symmetric tensor power associated with a character xi of a subgroup G of the symmetric group S-m. Throughout our work, we used some well-known formulas for the derivatives of all orders of a multilinear map, since the maps that we studied are all multilinear. In this paper, we intend to present an alternative proof of these formulas, using the multilinearity argument.Taylor & FrancisRCIPLCarvalho, Sonia2021-01-21T15:48:14Z2020-07-022020-07-02T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/12665engCARVALHO, Sónia – An alternative proof on higher order derivatives of a multilinear map. Linear & Multilinear Algebra. ISSN 0308-1087. Vol. 68, N.º 7 (2020), pp. 1457-14640308-108710.1080/03081087.2018.15468161563-5139metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T10:06:02Zoai:repositorio.ipl.pt:10400.21/12665Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:20:42.653717Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv An alternative proof on higher order derivatives of a multilinear map
title An alternative proof on higher order derivatives of a multilinear map
spellingShingle An alternative proof on higher order derivatives of a multilinear map
Carvalho, Sonia
Multilinear map
Higher order derivatives
Multilinearity argument
title_short An alternative proof on higher order derivatives of a multilinear map
title_full An alternative proof on higher order derivatives of a multilinear map
title_fullStr An alternative proof on higher order derivatives of a multilinear map
title_full_unstemmed An alternative proof on higher order derivatives of a multilinear map
title_sort An alternative proof on higher order derivatives of a multilinear map
author Carvalho, Sonia
author_facet Carvalho, Sonia
author_role author
dc.contributor.none.fl_str_mv RCIPL
dc.contributor.author.fl_str_mv Carvalho, Sonia
dc.subject.por.fl_str_mv Multilinear map
Higher order derivatives
Multilinearity argument
topic Multilinear map
Higher order derivatives
Multilinearity argument
description As a generalization of the formulas proved by Bhatia, Grover and Jain (Derivatives of tensor powers and their norms. Electron J Linear Algebra. 2013;26:604-619), in recent papers (The kth derivative of the immannant and the chi-symmetric tensor power of an operator. Electron J Linear Algebra. 2014;27:Article 18, On derivatives and norms of generalized matrix functions and respective symmetric powers. Electron J Linear Algebra. 2015;30:Article 22) Carvalho and Freitas obtained formulas for directional derivatives, of all orders, for generalized matrix functions and for every symmetric tensor power associated with a character xi of a subgroup G of the symmetric group S-m. Throughout our work, we used some well-known formulas for the derivatives of all orders of a multilinear map, since the maps that we studied are all multilinear. In this paper, we intend to present an alternative proof of these formulas, using the multilinearity argument.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-02
2020-07-02T00:00:00Z
2021-01-21T15:48:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.21/12665
url http://hdl.handle.net/10400.21/12665
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv CARVALHO, Sónia – An alternative proof on higher order derivatives of a multilinear map. Linear & Multilinear Algebra. ISSN 0308-1087. Vol. 68, N.º 7 (2020), pp. 1457-1464
0308-1087
10.1080/03081087.2018.1546816
1563-5139
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133476595695616