Clustering in cellular frustration models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/25202 |
Resumo: | Cellular frustrated systems are models of interacting agents displaying complex dynamics which can be used for anomaly detection applications. In their simplest versions, these models consist of two agent types, called presenters and detectors. Presenters display information from data samples. Detectors read this information and perceive it in a binary signal, depending on its frequency of appearance. The type of signal perceived will have an impact on the agents' decision dynamics. In particular, the presence of anomalies leads to less frustrated dynamics, i.e., more stable. In this thesis it is questioned if the mapping in binary signals could not bene t from the knowledge of the existence of clusters in the data set. To this end, a clustering technique was developed that gives particular attention to the fact that cellular frustrated systems discriminate samples depending on the number of features displaying rare values. The clusters obtained with this technique are also compared with those obtained using k-means or hierarchical agglomerative clustering. It is shown that using a clustering technique prior to application of cellular frustration system can improve anomaly detection rates. However, it is also shown that depending on the type of anomalies, this may not be generally the case, and therefore simpler cellular frustration algorithms may have the advantage of being simpler. It is believed that this study proposes new directions on how to improve the cellular frustration technique in a broader context. |
id |
RCAP_79de178fe6e4b5f2170de006390b8f5a |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/25202 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Clustering in cellular frustration modelsData miningAnomaly detectionCellular frustrationCellular frustrated systems are models of interacting agents displaying complex dynamics which can be used for anomaly detection applications. In their simplest versions, these models consist of two agent types, called presenters and detectors. Presenters display information from data samples. Detectors read this information and perceive it in a binary signal, depending on its frequency of appearance. The type of signal perceived will have an impact on the agents' decision dynamics. In particular, the presence of anomalies leads to less frustrated dynamics, i.e., more stable. In this thesis it is questioned if the mapping in binary signals could not bene t from the knowledge of the existence of clusters in the data set. To this end, a clustering technique was developed that gives particular attention to the fact that cellular frustrated systems discriminate samples depending on the number of features displaying rare values. The clusters obtained with this technique are also compared with those obtained using k-means or hierarchical agglomerative clustering. It is shown that using a clustering technique prior to application of cellular frustration system can improve anomaly detection rates. However, it is also shown that depending on the type of anomalies, this may not be generally the case, and therefore simpler cellular frustration algorithms may have the advantage of being simpler. It is believed that this study proposes new directions on how to improve the cellular frustration technique in a broader context.Sistemas de frustração celular são modelos de interação de agentes que demonstram uma dinâmica complexa que pode ser utilizada para aplicações de deteção de anomalias. Na sua versão mais simples, estes modelos são compostos por dois tipos de agentes, designados de apresentadores e detetores. Os apresentadores exibem a informação das amostras. Os detetores leem essa informação e percecionam-na em sinais binários, dependendo da frequência com que são apresentados. O tipo de sinal percecionado terá impacto na dinâmica de decisões dos agentes. Em particular, a presença de anomalias produz uma dinâmica menos frustrada, i.e., mais estável. Nesta tese é questionado se este mapeamento em sinais binários não poderá bene ciar do conhecimento da existência de grupos (clusters) nas amostras. Com esta nalidade, foi desenvolvida uma técnica de clustering, que dá particular atenção ao facto que os sistemas de frustração celular detetam as amostras dependendo do número de características que exibem valores extremos. Os clusters obtidos com esta técnica também são comparados com aqueles obtidos com técnicas conhecidas, como o k-means ou o clus- tering hierárquico aglomerativo. Nesta tese demonstra-se que a utilização de uma técnica de clustering antes da aplicação do sistema de frustração celular pode melhorar as taxas de deteção de anomalias. Contudo, também é demonstrado que dependendo do tipo de anomalias, esta alteração pode não ser bené ca, podendo ser mais vantajoso utilizar a técnica de frustração celular original, uma vez que é mais simples. Acredita-se que este estudo propõe direções claras sobre como se poderá vir a melhorar a técnica da frustração celular num contexto mais geral.2020-07-25T00:00:00Z2018-07-18T00:00:00Z2018-07-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/25202TID:202237184engCarvalho, Diana Barros deinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:49:06Zoai:ria.ua.pt:10773/25202Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:58:35.703088Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Clustering in cellular frustration models |
title |
Clustering in cellular frustration models |
spellingShingle |
Clustering in cellular frustration models Carvalho, Diana Barros de Data mining Anomaly detection Cellular frustration |
title_short |
Clustering in cellular frustration models |
title_full |
Clustering in cellular frustration models |
title_fullStr |
Clustering in cellular frustration models |
title_full_unstemmed |
Clustering in cellular frustration models |
title_sort |
Clustering in cellular frustration models |
author |
Carvalho, Diana Barros de |
author_facet |
Carvalho, Diana Barros de |
author_role |
author |
dc.contributor.author.fl_str_mv |
Carvalho, Diana Barros de |
dc.subject.por.fl_str_mv |
Data mining Anomaly detection Cellular frustration |
topic |
Data mining Anomaly detection Cellular frustration |
description |
Cellular frustrated systems are models of interacting agents displaying complex dynamics which can be used for anomaly detection applications. In their simplest versions, these models consist of two agent types, called presenters and detectors. Presenters display information from data samples. Detectors read this information and perceive it in a binary signal, depending on its frequency of appearance. The type of signal perceived will have an impact on the agents' decision dynamics. In particular, the presence of anomalies leads to less frustrated dynamics, i.e., more stable. In this thesis it is questioned if the mapping in binary signals could not bene t from the knowledge of the existence of clusters in the data set. To this end, a clustering technique was developed that gives particular attention to the fact that cellular frustrated systems discriminate samples depending on the number of features displaying rare values. The clusters obtained with this technique are also compared with those obtained using k-means or hierarchical agglomerative clustering. It is shown that using a clustering technique prior to application of cellular frustration system can improve anomaly detection rates. However, it is also shown that depending on the type of anomalies, this may not be generally the case, and therefore simpler cellular frustration algorithms may have the advantage of being simpler. It is believed that this study proposes new directions on how to improve the cellular frustration technique in a broader context. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07-18T00:00:00Z 2018-07-18 2020-07-25T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/25202 TID:202237184 |
url |
http://hdl.handle.net/10773/25202 |
identifier_str_mv |
TID:202237184 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137640283373568 |