Disease-course adapting machine learning prognostication models in critically ill elderly COVID-19 patients

Detalhes bibliográficos
Autor(a) principal: Jung, Christian
Data de Publicação: 2022
Outros Autores: Mamandipoor, Behrooz, Fjølner, Jesper, Bruno, Raphael, Wernly, Bernhard, Artigas, Antonio, Bollen Pinto, Bernardo, Schefold, Joerg C, Wolff, Georg, Kelm, Malte, Beil, Michael, Sviri, Sigal, van Heerden, Peter Vernon, Szczeklik, Wojciech, Czuczwar, Miroslaw, Elhadi, Muhammed, Joannidis, Michael, Oeyen, Sandra, Zafeiridis, Tilemachos, Marsh, Brian, Andersen, Finn H, Moreno, Rui, Cecconi, Maurizio, Leaver, Susannah, De Lange, Dylan W, Guidet, Bertrand, Flaatten, Hans, Osmani, Venet
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/136840
Resumo: Funding: he support of the study in France by a grant from Fondation Assistance Publique-Hôpitaux de Paris Pour la Recherche is greatly appreciated. In Norway, the study was supported by a grant from Health Region West. In addition, EOSCsecretariat.eu provided support and has received funding from the European Union’s Horizon Programme call H2020-INFRAEOSC-05-2018-2019, grant agreement number 831644. This work was supported by the Forschungskommission of the Medical Faculty of Heinrich-Heine-University Düsseldorf (grant 2018-32 to GW and grant 2020-21 to RB for a Clinician Scientist Track). The complete list of COVIP collaborators is provided in Multimedia Appendix 10.
id RCAP_7a8cc4cbc6691cd6d27cb7a8055044f0
oai_identifier_str oai:run.unl.pt:10362/136840
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Disease-course adapting machine learning prognostication models in critically ill elderly COVID-19 patientsa multi-centre cohort study with external validationclinical informaticsCOVID-19elderly populationmachine learningmachine-based learningoutcome predictionpandemicpatient dataprediction modelsFunding: he support of the study in France by a grant from Fondation Assistance Publique-Hôpitaux de Paris Pour la Recherche is greatly appreciated. In Norway, the study was supported by a grant from Health Region West. In addition, EOSCsecretariat.eu provided support and has received funding from the European Union’s Horizon Programme call H2020-INFRAEOSC-05-2018-2019, grant agreement number 831644. This work was supported by the Forschungskommission of the Medical Faculty of Heinrich-Heine-University Düsseldorf (grant 2018-32 to GW and grant 2020-21 to RB for a Clinician Scientist Track). The complete list of COVIP collaborators is provided in Multimedia Appendix 10.BACKGROUND: The SARS-CoV-2 coronavirus disease (COVID-19) pandemic is challenging health care systems globally. The disease disproportionately affects the elderly population, both in terms of disease severity and mortality risk. OBJECTIVE: This study aimed to evaluate machine-learning based prognostication models for critically ill elderly COVID-19 patients, which dynamically incorporated multifaceted clinical information on the evolution of the disease. METHODS: This multi-centre cohort study obtained patient data from 151 ICUs from 26 countries (COVIP study). Different models based on the Sequential Organ Failure Assessment (SOFA), Logistic Regression (LR), Random Forest (RF) and Extreme Gradient Boosting (XGBoost) were derived as baseline models that included admission variables only. We subsequently included clinical events and time-to-event as additional variables to derive the final models using the same algorithms and compared their performance with the baseline group. Furthermore, we derived baseline and final models on a European patient cohort and externally validated them on a non-European cohort that included Asian, African and American patients. RESULTS: In total, 1,432 elderly (≥70 years) COVID-19 positive patients were admitted to an intensive care unit. Of these 809 (56.5%) patients survived up to 30 days after admission. The average length of stay was 21.6 (±18.2) days. Final models that incorporated clinical events and time-to-event provided superior performance with AUC of 0.81 (95% CI 0.804-0.811), with respect to both, the baseline models that used admission variables only and conventional ICU prediction models (SOFA-score, p<.001). The average precision increased from 0.65 (95% CI 0.650-0.655) to 0.77 (95% CI 0.759-0.770). CONCLUSIONS: Integrating important clinical events and time-to-event information led to a superior accuracy of 30-day mortality prediction compared with models based on the admission information and conventional ICU prediction models. The present study shows that machine-learning models provide additional information and may support complex decision-making in critically ill elderly COVID-19 patients. CLINICALTRIAL: Nct04321265.NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)RUNJung, ChristianMamandipoor, BehroozFjølner, JesperBruno, RaphaelWernly, BernhardArtigas, AntonioBollen Pinto, BernardoSchefold, Joerg CWolff, GeorgKelm, MalteBeil, MichaelSviri, Sigalvan Heerden, Peter VernonSzczeklik, WojciechCzuczwar, MiroslawElhadi, MuhammedJoannidis, MichaelOeyen, SandraZafeiridis, TilemachosMarsh, BrianAndersen, Finn HMoreno, RuiCecconi, MaurizioLeaver, SusannahDe Lange, Dylan WGuidet, BertrandFlaatten, HansOsmani, Venet2022-04-22T22:32:57Z2022-03-312022-03-31T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/136840eng2291-9694PURE: 41813631https://doi.org/10.2196/32949info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T18:01:12Zoai:run.unl.pt:10362/136840Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T18:01:12Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Disease-course adapting machine learning prognostication models in critically ill elderly COVID-19 patients
a multi-centre cohort study with external validation
title Disease-course adapting machine learning prognostication models in critically ill elderly COVID-19 patients
spellingShingle Disease-course adapting machine learning prognostication models in critically ill elderly COVID-19 patients
Jung, Christian
clinical informatics
COVID-19
elderly population
machine learning
machine-based learning
outcome prediction
pandemic
patient data
prediction models
title_short Disease-course adapting machine learning prognostication models in critically ill elderly COVID-19 patients
title_full Disease-course adapting machine learning prognostication models in critically ill elderly COVID-19 patients
title_fullStr Disease-course adapting machine learning prognostication models in critically ill elderly COVID-19 patients
title_full_unstemmed Disease-course adapting machine learning prognostication models in critically ill elderly COVID-19 patients
title_sort Disease-course adapting machine learning prognostication models in critically ill elderly COVID-19 patients
author Jung, Christian
author_facet Jung, Christian
Mamandipoor, Behrooz
Fjølner, Jesper
Bruno, Raphael
Wernly, Bernhard
Artigas, Antonio
Bollen Pinto, Bernardo
Schefold, Joerg C
Wolff, Georg
Kelm, Malte
Beil, Michael
Sviri, Sigal
van Heerden, Peter Vernon
Szczeklik, Wojciech
Czuczwar, Miroslaw
Elhadi, Muhammed
Joannidis, Michael
Oeyen, Sandra
Zafeiridis, Tilemachos
Marsh, Brian
Andersen, Finn H
Moreno, Rui
Cecconi, Maurizio
Leaver, Susannah
De Lange, Dylan W
Guidet, Bertrand
Flaatten, Hans
Osmani, Venet
author_role author
author2 Mamandipoor, Behrooz
Fjølner, Jesper
Bruno, Raphael
Wernly, Bernhard
Artigas, Antonio
Bollen Pinto, Bernardo
Schefold, Joerg C
Wolff, Georg
Kelm, Malte
Beil, Michael
Sviri, Sigal
van Heerden, Peter Vernon
Szczeklik, Wojciech
Czuczwar, Miroslaw
Elhadi, Muhammed
Joannidis, Michael
Oeyen, Sandra
Zafeiridis, Tilemachos
Marsh, Brian
Andersen, Finn H
Moreno, Rui
Cecconi, Maurizio
Leaver, Susannah
De Lange, Dylan W
Guidet, Bertrand
Flaatten, Hans
Osmani, Venet
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)
RUN
dc.contributor.author.fl_str_mv Jung, Christian
Mamandipoor, Behrooz
Fjølner, Jesper
Bruno, Raphael
Wernly, Bernhard
Artigas, Antonio
Bollen Pinto, Bernardo
Schefold, Joerg C
Wolff, Georg
Kelm, Malte
Beil, Michael
Sviri, Sigal
van Heerden, Peter Vernon
Szczeklik, Wojciech
Czuczwar, Miroslaw
Elhadi, Muhammed
Joannidis, Michael
Oeyen, Sandra
Zafeiridis, Tilemachos
Marsh, Brian
Andersen, Finn H
Moreno, Rui
Cecconi, Maurizio
Leaver, Susannah
De Lange, Dylan W
Guidet, Bertrand
Flaatten, Hans
Osmani, Venet
dc.subject.por.fl_str_mv clinical informatics
COVID-19
elderly population
machine learning
machine-based learning
outcome prediction
pandemic
patient data
prediction models
topic clinical informatics
COVID-19
elderly population
machine learning
machine-based learning
outcome prediction
pandemic
patient data
prediction models
description Funding: he support of the study in France by a grant from Fondation Assistance Publique-Hôpitaux de Paris Pour la Recherche is greatly appreciated. In Norway, the study was supported by a grant from Health Region West. In addition, EOSCsecretariat.eu provided support and has received funding from the European Union’s Horizon Programme call H2020-INFRAEOSC-05-2018-2019, grant agreement number 831644. This work was supported by the Forschungskommission of the Medical Faculty of Heinrich-Heine-University Düsseldorf (grant 2018-32 to GW and grant 2020-21 to RB for a Clinician Scientist Track). The complete list of COVIP collaborators is provided in Multimedia Appendix 10.
publishDate 2022
dc.date.none.fl_str_mv 2022-04-22T22:32:57Z
2022-03-31
2022-03-31T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/136840
url http://hdl.handle.net/10362/136840
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2291-9694
PURE: 41813631
https://doi.org/10.2196/32949
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817545859101884416