Exposure modelling of transmission towers using street-level imagery and a deep learning object detection model

Detalhes bibliográficos
Autor(a) principal: Cesarini, L
Data de Publicação: 2022
Outros Autores: Figueiredo, R, Xavier Romão, Martina, M
Tipo de documento: Livro
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/149317
Resumo: Exposure modelling is a vital component of disaster risk assessments, providing geospatial information of assets at risk and their characteristics. Detailed information about exposure bring benefits to the spatial representation of a rapidly changing environment and allows decision makers to establish better policies aimed at reducing disaster risk. This work proposes and demonstrates a methodology aimed at linking together volunteered geographic information from OpenStreetMap (OSM), street-level imagery from Google Street View (GSV) and deep learning object detection models into the automated creation of exposure datasets of power grid transmission towers, an asset particularly vulnerable to strong wind among other perils. The methodology is implemented through a start-to-end pipeline that starting from the locations of transmission towers derived from the power grid layer of OSMs world infrastructure, can assign relevant features of the tower based on the identification and classification returned from an object detection model over street-level imagery of the tower, obtained from GSV. The initial outcomes yielded promising results towards the establishment of the exposure dataset. For the identification task, the YOLOv5 model returned a mean average precision (mAP) of 83.57% at intersection over union (IoU) of 50%. For the classification problem, although predictive performance varies significantly among tower types, we show that high values of mAP can be achieved when there is a sufficiently high number of good quality images with which to train the model. (c) 2022, National Technical University of Athens. All rights reserved.
id RCAP_7b01edc664147903fc741e0973e75e17
oai_identifier_str oai:repositorio-aberto.up.pt:10216/149317
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Exposure modelling of transmission towers using street-level imagery and a deep learning object detection modelExposure modelling is a vital component of disaster risk assessments, providing geospatial information of assets at risk and their characteristics. Detailed information about exposure bring benefits to the spatial representation of a rapidly changing environment and allows decision makers to establish better policies aimed at reducing disaster risk. This work proposes and demonstrates a methodology aimed at linking together volunteered geographic information from OpenStreetMap (OSM), street-level imagery from Google Street View (GSV) and deep learning object detection models into the automated creation of exposure datasets of power grid transmission towers, an asset particularly vulnerable to strong wind among other perils. The methodology is implemented through a start-to-end pipeline that starting from the locations of transmission towers derived from the power grid layer of OSMs world infrastructure, can assign relevant features of the tower based on the identification and classification returned from an object detection model over street-level imagery of the tower, obtained from GSV. The initial outcomes yielded promising results towards the establishment of the exposure dataset. For the identification task, the YOLOv5 model returned a mean average precision (mAP) of 83.57% at intersection over union (IoU) of 50%. For the classification problem, although predictive performance varies significantly among tower types, we show that high values of mAP can be achieved when there is a sufficiently high number of good quality images with which to train the model. (c) 2022, National Technical University of Athens. All rights reserved.20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/149317eng10.5194/egusphere-egu22-9406Cesarini, LFigueiredo, RXavier RomãoMartina, Minfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T12:54:10Zoai:repositorio-aberto.up.pt:10216/149317Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:29:02.399432Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Exposure modelling of transmission towers using street-level imagery and a deep learning object detection model
title Exposure modelling of transmission towers using street-level imagery and a deep learning object detection model
spellingShingle Exposure modelling of transmission towers using street-level imagery and a deep learning object detection model
Cesarini, L
title_short Exposure modelling of transmission towers using street-level imagery and a deep learning object detection model
title_full Exposure modelling of transmission towers using street-level imagery and a deep learning object detection model
title_fullStr Exposure modelling of transmission towers using street-level imagery and a deep learning object detection model
title_full_unstemmed Exposure modelling of transmission towers using street-level imagery and a deep learning object detection model
title_sort Exposure modelling of transmission towers using street-level imagery and a deep learning object detection model
author Cesarini, L
author_facet Cesarini, L
Figueiredo, R
Xavier Romão
Martina, M
author_role author
author2 Figueiredo, R
Xavier Romão
Martina, M
author2_role author
author
author
dc.contributor.author.fl_str_mv Cesarini, L
Figueiredo, R
Xavier Romão
Martina, M
description Exposure modelling is a vital component of disaster risk assessments, providing geospatial information of assets at risk and their characteristics. Detailed information about exposure bring benefits to the spatial representation of a rapidly changing environment and allows decision makers to establish better policies aimed at reducing disaster risk. This work proposes and demonstrates a methodology aimed at linking together volunteered geographic information from OpenStreetMap (OSM), street-level imagery from Google Street View (GSV) and deep learning object detection models into the automated creation of exposure datasets of power grid transmission towers, an asset particularly vulnerable to strong wind among other perils. The methodology is implemented through a start-to-end pipeline that starting from the locations of transmission towers derived from the power grid layer of OSMs world infrastructure, can assign relevant features of the tower based on the identification and classification returned from an object detection model over street-level imagery of the tower, obtained from GSV. The initial outcomes yielded promising results towards the establishment of the exposure dataset. For the identification task, the YOLOv5 model returned a mean average precision (mAP) of 83.57% at intersection over union (IoU) of 50%. For the classification problem, although predictive performance varies significantly among tower types, we show that high values of mAP can be achieved when there is a sufficiently high number of good quality images with which to train the model. (c) 2022, National Technical University of Athens. All rights reserved.
publishDate 2022
dc.date.none.fl_str_mv 2022
2022-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/book
format book
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/149317
url https://hdl.handle.net/10216/149317
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5194/egusphere-egu22-9406
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135597729677312