Hospital long-term care discharge clusters: a nationwide study using Clustering and Decision Tree methods
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/21269 |
Resumo: | Introduction: The ageing of the population structure leads to higher needs of long-term care (LTC). In order to adapt LTC and its associated policies it is important to establish the appropriate setting of personalised care. Hence, it is important to understand the associated factors that lead patients to the LTC use. The objective of this study is to assess clusters of hospitalised patients with higher proportion of discharges to LTC (LTCD) in Portugal, as well as to test the clustering method as a solution for an early identification of potential users, using different approaches. Methods: A nationwide Portuguese study was performed, using inpatient data from Portuguese hospitals with discharges between 2012 and 2017. The variables used in this study were age, sex, principal diagnosis, comorbidities (identified using secondary diagnoses), admission type and hospital transfer. The main outcome of this analysis is being discharged to long-term and maintenance units (Unidades de Longa Duração e Manutenção - ULDM). Different approaches were applied to categorise principal diagnosis for each inpatient episode, using ICD-9-CM and ICD-10-CM main groups, ICD-9-CM and ICD-10-CM more detailed categories, Clinical Classification Software (CCS) and CCS Refined (CCSR). Subsequently, hierarchical clustering techniques were applied to determine the number of clusters in each dataset and decision tree methods were used to characterize each cluster. Results: A total of 4427 inpatient episodes (0.23%) were discharged to LTC. Across the different methods to characterise principal diagnosis, the clusters with the highest proportion of discharges to LTC ranged between 0.7% and 60.8%. Conclusion: There is great variability of the clustering results when comparing the different approaches of categorising principal diagnosis. The “quality” of the principal diagnosis categorisation overcomes the “quantity” (i.e. number of categories). This can have important implications for health system policies and hospital management Nevertheless, clustering methods showed to be good options to identify high-risk groups. |
id |
RCAP_7b45c085225bb4b58053ac7e232580c7 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/21269 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Hospital long-term care discharge clusters: a nationwide study using Clustering and Decision Tree methodsLong-term careAssociated factorsHospital dischargeHospitalizationClusteringDecision treePortugalCuidados de longa duraçãoAlta hospitalarHospitalizaçãoÁrvores de decisãoIntroduction: The ageing of the population structure leads to higher needs of long-term care (LTC). In order to adapt LTC and its associated policies it is important to establish the appropriate setting of personalised care. Hence, it is important to understand the associated factors that lead patients to the LTC use. The objective of this study is to assess clusters of hospitalised patients with higher proportion of discharges to LTC (LTCD) in Portugal, as well as to test the clustering method as a solution for an early identification of potential users, using different approaches. Methods: A nationwide Portuguese study was performed, using inpatient data from Portuguese hospitals with discharges between 2012 and 2017. The variables used in this study were age, sex, principal diagnosis, comorbidities (identified using secondary diagnoses), admission type and hospital transfer. The main outcome of this analysis is being discharged to long-term and maintenance units (Unidades de Longa Duração e Manutenção - ULDM). Different approaches were applied to categorise principal diagnosis for each inpatient episode, using ICD-9-CM and ICD-10-CM main groups, ICD-9-CM and ICD-10-CM more detailed categories, Clinical Classification Software (CCS) and CCS Refined (CCSR). Subsequently, hierarchical clustering techniques were applied to determine the number of clusters in each dataset and decision tree methods were used to characterize each cluster. Results: A total of 4427 inpatient episodes (0.23%) were discharged to LTC. Across the different methods to characterise principal diagnosis, the clusters with the highest proportion of discharges to LTC ranged between 0.7% and 60.8%. Conclusion: There is great variability of the clustering results when comparing the different approaches of categorising principal diagnosis. The “quality” of the principal diagnosis categorisation overcomes the “quantity” (i.e. number of categories). This can have important implications for health system policies and hospital management Nevertheless, clustering methods showed to be good options to identify high-risk groups.Introdução: O envelhecimento da estrutura populacional conduz a maiores necessidades de cuidados de longa duração. Para adaptar estes cuidados e as políticas associadas, é importante estabelecer o cenário adequado de cuidados para cada pessoa. Para isso, importa compreender os fatores associados à admissão de pacientes para estas unidades. O objetivo deste estudo é avaliar clusters de pacientes internados com maior proporção de alta para unidades de cuidados de longa duração em Portugal, bem como testar o método de clustering como solução para a identificação precoce de potenciais utentes, utilizando diferentes abordagens. Métodos: Foi realizado um estudo nacional, utilizando dados de internamento de hospitais portugueses com altas entre 2012 e 2017. As variáveis utilizadas neste estudo foram idade, sexo, diagnóstico principal, comorbilidades (identificadas através de diagnósticos secundários), tipo de admissão e transferência hospitalar. Nesta análise, o principal resultado foi receber alta para Unidades de Longa Duração e Manutenção (ULDM). Diferentes abordagens foram aplicadas para categorizar o diagnóstico principal para cada episódio de internamento, usando os grupos principais da ICD-9-CM e ICD10-CM, categorias mais detalhadas da ICD-9-CM e ICD-10-CM, Clinical Classification Software (CCS) e CCSR Refined (CCSR). Posteriormente, técnicas de clustering hierárquico foram aplicadas para determinar o número de clusters em cada conjunto de dados e métodos de árvore de decisão foram utilizados para caracterizar cada cluster. Resultados: Um total de 4427 episódios de internamentos (0,23%) teve alta para ULDM. Entre os métodos, os clusters com maior proporção de altas para ULDM variaram entre 0,7% e 60,8% usando as diferentes categorizações de diagnósticos principais. Conclusão: Há uma grande variabilidade dos resultados de clustering ao comparar as diferentes abordagens de categorização dos diagnósticos principais. A “qualidade” da categorização do diagnóstico principal supera a “quantidade” (ou seja, número de categorias). Isso pode ter implicações importantes para as políticas do sistema de saúde e gestão hospitalar. No entanto, os métodos de clustering mostraram-se boas opções para identificar grupos de alto risco.Marreiros, Maria Goreti CarvalhoRepositório Científico do Instituto Politécnico do PortoCarreira, Ana Rita Afonso20222025-11-16T00:00:00Z2022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/21269TID:203112121enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:17:07Zoai:recipp.ipp.pt:10400.22/21269Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:41:20.672075Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Hospital long-term care discharge clusters: a nationwide study using Clustering and Decision Tree methods |
title |
Hospital long-term care discharge clusters: a nationwide study using Clustering and Decision Tree methods |
spellingShingle |
Hospital long-term care discharge clusters: a nationwide study using Clustering and Decision Tree methods Carreira, Ana Rita Afonso Long-term care Associated factors Hospital discharge Hospitalization Clustering Decision tree Portugal Cuidados de longa duração Alta hospitalar Hospitalização Árvores de decisão |
title_short |
Hospital long-term care discharge clusters: a nationwide study using Clustering and Decision Tree methods |
title_full |
Hospital long-term care discharge clusters: a nationwide study using Clustering and Decision Tree methods |
title_fullStr |
Hospital long-term care discharge clusters: a nationwide study using Clustering and Decision Tree methods |
title_full_unstemmed |
Hospital long-term care discharge clusters: a nationwide study using Clustering and Decision Tree methods |
title_sort |
Hospital long-term care discharge clusters: a nationwide study using Clustering and Decision Tree methods |
author |
Carreira, Ana Rita Afonso |
author_facet |
Carreira, Ana Rita Afonso |
author_role |
author |
dc.contributor.none.fl_str_mv |
Marreiros, Maria Goreti Carvalho Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Carreira, Ana Rita Afonso |
dc.subject.por.fl_str_mv |
Long-term care Associated factors Hospital discharge Hospitalization Clustering Decision tree Portugal Cuidados de longa duração Alta hospitalar Hospitalização Árvores de decisão |
topic |
Long-term care Associated factors Hospital discharge Hospitalization Clustering Decision tree Portugal Cuidados de longa duração Alta hospitalar Hospitalização Árvores de decisão |
description |
Introduction: The ageing of the population structure leads to higher needs of long-term care (LTC). In order to adapt LTC and its associated policies it is important to establish the appropriate setting of personalised care. Hence, it is important to understand the associated factors that lead patients to the LTC use. The objective of this study is to assess clusters of hospitalised patients with higher proportion of discharges to LTC (LTCD) in Portugal, as well as to test the clustering method as a solution for an early identification of potential users, using different approaches. Methods: A nationwide Portuguese study was performed, using inpatient data from Portuguese hospitals with discharges between 2012 and 2017. The variables used in this study were age, sex, principal diagnosis, comorbidities (identified using secondary diagnoses), admission type and hospital transfer. The main outcome of this analysis is being discharged to long-term and maintenance units (Unidades de Longa Duração e Manutenção - ULDM). Different approaches were applied to categorise principal diagnosis for each inpatient episode, using ICD-9-CM and ICD-10-CM main groups, ICD-9-CM and ICD-10-CM more detailed categories, Clinical Classification Software (CCS) and CCS Refined (CCSR). Subsequently, hierarchical clustering techniques were applied to determine the number of clusters in each dataset and decision tree methods were used to characterize each cluster. Results: A total of 4427 inpatient episodes (0.23%) were discharged to LTC. Across the different methods to characterise principal diagnosis, the clusters with the highest proportion of discharges to LTC ranged between 0.7% and 60.8%. Conclusion: There is great variability of the clustering results when comparing the different approaches of categorising principal diagnosis. The “quality” of the principal diagnosis categorisation overcomes the “quantity” (i.e. number of categories). This can have important implications for health system policies and hospital management Nevertheless, clustering methods showed to be good options to identify high-risk groups. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2022-01-01T00:00:00Z 2025-11-16T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/21269 TID:203112121 |
url |
http://hdl.handle.net/10400.22/21269 |
identifier_str_mv |
TID:203112121 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131501289275392 |