5GASP continuous integration

Detalhes bibliográficos
Autor(a) principal: Direito, Rafael das Neves Simões
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/33621
Resumo: The wide adoption of an NFV-oriented paradigm by network operators proves the importance of NFV in the future of communication networks. This paradigm allows network operators to speed up the development process of their services, decoupling hardware from the functionalities provided by these services. However, since NFV has only been recently globally adopted, several questions and difficulties arose. Network operators need to ensure the reliability and the correct behavior of their Virtualized Network Functions, which poses severe challenges. Thus, the need for developing new validation tools, which are capable of validating network functions that live in an NFV ecosystem. 5GASP is a European project which aims to shorten the idea-to-market process by creating a fully automated and selfservice 5G testbed and providing support tools for Continuous Integration in a secure and trusted environment, addressing the DevOps paradigm. Being aligned with 5GASP’s goals, this dissertation mainly addresses the development of tools to validate NetApps. To accomplish this, this document introduces two different mechanisms for validating NetApps. The first tool is responsible for statically validate the NetApps before they are deployed in 5GASP’s testbeds, being denominated by NetApp Package Validator. Regarding this tool, during this document the focus is its Descriptors Validator Module, which validates the NetApp descriptors through syntactic, semantics, and reference validation and supports NetApps developed according to different Information Models. The second tool comprises an automated validation pipeline. This pipeline validates the functionality and the behavior of the NetApps once they are deployed in a 5G-testbed. Besides, it collects several metrics to enable a better understanding of the NetApp’s behavior. Both tools are expected to be integrated with the 5GASP’s ecosystem. This document presents the requirements definition, architecture, and implementation of these tools and presents their results and outputs.
id RCAP_7c0043384c6abadfdf7d0a68de41d59a
oai_identifier_str oai:ria.ua.pt:10773/33621
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling 5GASP continuous integration5GNFVNetAppOSMContinuous integrationAutomationValidationMonitoringThe wide adoption of an NFV-oriented paradigm by network operators proves the importance of NFV in the future of communication networks. This paradigm allows network operators to speed up the development process of their services, decoupling hardware from the functionalities provided by these services. However, since NFV has only been recently globally adopted, several questions and difficulties arose. Network operators need to ensure the reliability and the correct behavior of their Virtualized Network Functions, which poses severe challenges. Thus, the need for developing new validation tools, which are capable of validating network functions that live in an NFV ecosystem. 5GASP is a European project which aims to shorten the idea-to-market process by creating a fully automated and selfservice 5G testbed and providing support tools for Continuous Integration in a secure and trusted environment, addressing the DevOps paradigm. Being aligned with 5GASP’s goals, this dissertation mainly addresses the development of tools to validate NetApps. To accomplish this, this document introduces two different mechanisms for validating NetApps. The first tool is responsible for statically validate the NetApps before they are deployed in 5GASP’s testbeds, being denominated by NetApp Package Validator. Regarding this tool, during this document the focus is its Descriptors Validator Module, which validates the NetApp descriptors through syntactic, semantics, and reference validation and supports NetApps developed according to different Information Models. The second tool comprises an automated validation pipeline. This pipeline validates the functionality and the behavior of the NetApps once they are deployed in a 5G-testbed. Besides, it collects several metrics to enable a better understanding of the NetApp’s behavior. Both tools are expected to be integrated with the 5GASP’s ecosystem. This document presents the requirements definition, architecture, and implementation of these tools and presents their results and outputs.The wide adoption of an NFV-oriented paradigm by network operators proves the importance of NFV in the future of communication networks. This paradigm allows network operators to speed up the development process of their services, decoupling hardware from the functionalities provided by these services. However, since NFV has only been recently globally adopted, several questions and difficulties arose. Network operators need to ensure the reliability and the correct behavior of their Virtualized Network Functions, which poses severe challenges. Thus, the need for developing new validation tools, which are capable of validating network functions that live in an NFV ecosystem. 5GASP is a European project which aims to shorten the idea-to-market process by creating a fully automated and selfservice 5G testbed and providing support tools for Continuous Integration in a secure and trusted environment, addressing the DevOps paradigm. Being aligned with 5GASP’s goals, this dissertation mainly addresses the development of tools to validate NetApps. To accomplish this, this document introduces two different mechanisms for validating NetApps. The first tool is responsible for statically validate the NetApps before they are deployed in 5GASP’s testbeds, being denominated by NetApp Package Validator. Regarding this tool, during this document the focus is its Descriptors Validator Module, which validates the NetApp descriptors through syntactic, semantics, and reference validation and supports NetApps developed according to different Information Models. The second tool comprises an automated validation pipeline. This pipeline validates the functionality and the behavior of the NetApps once they are deployed in a 5G-testbed. Besides, it collects several metrics to enable a better understanding of the NetApp’s behavior. Both tools are expected to be integrated with the 5GASP’s ecosystem. This document presents the requirements definition, architecture, and implementation of these tools and presents their results and outputs.2022-04-05T12:27:20Z2021-11-24T00:00:00Z2021-11-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/33621engDireito, Rafael das Neves Simõesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:04:42Zoai:ria.ua.pt:10773/33621Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:01.082233Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv 5GASP continuous integration
title 5GASP continuous integration
spellingShingle 5GASP continuous integration
Direito, Rafael das Neves Simões
5G
NFV
NetApp
OSM
Continuous integration
Automation
Validation
Monitoring
title_short 5GASP continuous integration
title_full 5GASP continuous integration
title_fullStr 5GASP continuous integration
title_full_unstemmed 5GASP continuous integration
title_sort 5GASP continuous integration
author Direito, Rafael das Neves Simões
author_facet Direito, Rafael das Neves Simões
author_role author
dc.contributor.author.fl_str_mv Direito, Rafael das Neves Simões
dc.subject.por.fl_str_mv 5G
NFV
NetApp
OSM
Continuous integration
Automation
Validation
Monitoring
topic 5G
NFV
NetApp
OSM
Continuous integration
Automation
Validation
Monitoring
description The wide adoption of an NFV-oriented paradigm by network operators proves the importance of NFV in the future of communication networks. This paradigm allows network operators to speed up the development process of their services, decoupling hardware from the functionalities provided by these services. However, since NFV has only been recently globally adopted, several questions and difficulties arose. Network operators need to ensure the reliability and the correct behavior of their Virtualized Network Functions, which poses severe challenges. Thus, the need for developing new validation tools, which are capable of validating network functions that live in an NFV ecosystem. 5GASP is a European project which aims to shorten the idea-to-market process by creating a fully automated and selfservice 5G testbed and providing support tools for Continuous Integration in a secure and trusted environment, addressing the DevOps paradigm. Being aligned with 5GASP’s goals, this dissertation mainly addresses the development of tools to validate NetApps. To accomplish this, this document introduces two different mechanisms for validating NetApps. The first tool is responsible for statically validate the NetApps before they are deployed in 5GASP’s testbeds, being denominated by NetApp Package Validator. Regarding this tool, during this document the focus is its Descriptors Validator Module, which validates the NetApp descriptors through syntactic, semantics, and reference validation and supports NetApps developed according to different Information Models. The second tool comprises an automated validation pipeline. This pipeline validates the functionality and the behavior of the NetApps once they are deployed in a 5G-testbed. Besides, it collects several metrics to enable a better understanding of the NetApp’s behavior. Both tools are expected to be integrated with the 5GASP’s ecosystem. This document presents the requirements definition, architecture, and implementation of these tools and presents their results and outputs.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-24T00:00:00Z
2021-11-24
2022-04-05T12:27:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/33621
url http://hdl.handle.net/10773/33621
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137705601269760