5GASP continuous integration
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/33621 |
Resumo: | The wide adoption of an NFV-oriented paradigm by network operators proves the importance of NFV in the future of communication networks. This paradigm allows network operators to speed up the development process of their services, decoupling hardware from the functionalities provided by these services. However, since NFV has only been recently globally adopted, several questions and difficulties arose. Network operators need to ensure the reliability and the correct behavior of their Virtualized Network Functions, which poses severe challenges. Thus, the need for developing new validation tools, which are capable of validating network functions that live in an NFV ecosystem. 5GASP is a European project which aims to shorten the idea-to-market process by creating a fully automated and selfservice 5G testbed and providing support tools for Continuous Integration in a secure and trusted environment, addressing the DevOps paradigm. Being aligned with 5GASP’s goals, this dissertation mainly addresses the development of tools to validate NetApps. To accomplish this, this document introduces two different mechanisms for validating NetApps. The first tool is responsible for statically validate the NetApps before they are deployed in 5GASP’s testbeds, being denominated by NetApp Package Validator. Regarding this tool, during this document the focus is its Descriptors Validator Module, which validates the NetApp descriptors through syntactic, semantics, and reference validation and supports NetApps developed according to different Information Models. The second tool comprises an automated validation pipeline. This pipeline validates the functionality and the behavior of the NetApps once they are deployed in a 5G-testbed. Besides, it collects several metrics to enable a better understanding of the NetApp’s behavior. Both tools are expected to be integrated with the 5GASP’s ecosystem. This document presents the requirements definition, architecture, and implementation of these tools and presents their results and outputs. |
id |
RCAP_7c0043384c6abadfdf7d0a68de41d59a |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/33621 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
5GASP continuous integration5GNFVNetAppOSMContinuous integrationAutomationValidationMonitoringThe wide adoption of an NFV-oriented paradigm by network operators proves the importance of NFV in the future of communication networks. This paradigm allows network operators to speed up the development process of their services, decoupling hardware from the functionalities provided by these services. However, since NFV has only been recently globally adopted, several questions and difficulties arose. Network operators need to ensure the reliability and the correct behavior of their Virtualized Network Functions, which poses severe challenges. Thus, the need for developing new validation tools, which are capable of validating network functions that live in an NFV ecosystem. 5GASP is a European project which aims to shorten the idea-to-market process by creating a fully automated and selfservice 5G testbed and providing support tools for Continuous Integration in a secure and trusted environment, addressing the DevOps paradigm. Being aligned with 5GASP’s goals, this dissertation mainly addresses the development of tools to validate NetApps. To accomplish this, this document introduces two different mechanisms for validating NetApps. The first tool is responsible for statically validate the NetApps before they are deployed in 5GASP’s testbeds, being denominated by NetApp Package Validator. Regarding this tool, during this document the focus is its Descriptors Validator Module, which validates the NetApp descriptors through syntactic, semantics, and reference validation and supports NetApps developed according to different Information Models. The second tool comprises an automated validation pipeline. This pipeline validates the functionality and the behavior of the NetApps once they are deployed in a 5G-testbed. Besides, it collects several metrics to enable a better understanding of the NetApp’s behavior. Both tools are expected to be integrated with the 5GASP’s ecosystem. This document presents the requirements definition, architecture, and implementation of these tools and presents their results and outputs.The wide adoption of an NFV-oriented paradigm by network operators proves the importance of NFV in the future of communication networks. This paradigm allows network operators to speed up the development process of their services, decoupling hardware from the functionalities provided by these services. However, since NFV has only been recently globally adopted, several questions and difficulties arose. Network operators need to ensure the reliability and the correct behavior of their Virtualized Network Functions, which poses severe challenges. Thus, the need for developing new validation tools, which are capable of validating network functions that live in an NFV ecosystem. 5GASP is a European project which aims to shorten the idea-to-market process by creating a fully automated and selfservice 5G testbed and providing support tools for Continuous Integration in a secure and trusted environment, addressing the DevOps paradigm. Being aligned with 5GASP’s goals, this dissertation mainly addresses the development of tools to validate NetApps. To accomplish this, this document introduces two different mechanisms for validating NetApps. The first tool is responsible for statically validate the NetApps before they are deployed in 5GASP’s testbeds, being denominated by NetApp Package Validator. Regarding this tool, during this document the focus is its Descriptors Validator Module, which validates the NetApp descriptors through syntactic, semantics, and reference validation and supports NetApps developed according to different Information Models. The second tool comprises an automated validation pipeline. This pipeline validates the functionality and the behavior of the NetApps once they are deployed in a 5G-testbed. Besides, it collects several metrics to enable a better understanding of the NetApp’s behavior. Both tools are expected to be integrated with the 5GASP’s ecosystem. This document presents the requirements definition, architecture, and implementation of these tools and presents their results and outputs.2022-04-05T12:27:20Z2021-11-24T00:00:00Z2021-11-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/33621engDireito, Rafael das Neves Simõesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:04:42Zoai:ria.ua.pt:10773/33621Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:01.082233Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
5GASP continuous integration |
title |
5GASP continuous integration |
spellingShingle |
5GASP continuous integration Direito, Rafael das Neves Simões 5G NFV NetApp OSM Continuous integration Automation Validation Monitoring |
title_short |
5GASP continuous integration |
title_full |
5GASP continuous integration |
title_fullStr |
5GASP continuous integration |
title_full_unstemmed |
5GASP continuous integration |
title_sort |
5GASP continuous integration |
author |
Direito, Rafael das Neves Simões |
author_facet |
Direito, Rafael das Neves Simões |
author_role |
author |
dc.contributor.author.fl_str_mv |
Direito, Rafael das Neves Simões |
dc.subject.por.fl_str_mv |
5G NFV NetApp OSM Continuous integration Automation Validation Monitoring |
topic |
5G NFV NetApp OSM Continuous integration Automation Validation Monitoring |
description |
The wide adoption of an NFV-oriented paradigm by network operators proves the importance of NFV in the future of communication networks. This paradigm allows network operators to speed up the development process of their services, decoupling hardware from the functionalities provided by these services. However, since NFV has only been recently globally adopted, several questions and difficulties arose. Network operators need to ensure the reliability and the correct behavior of their Virtualized Network Functions, which poses severe challenges. Thus, the need for developing new validation tools, which are capable of validating network functions that live in an NFV ecosystem. 5GASP is a European project which aims to shorten the idea-to-market process by creating a fully automated and selfservice 5G testbed and providing support tools for Continuous Integration in a secure and trusted environment, addressing the DevOps paradigm. Being aligned with 5GASP’s goals, this dissertation mainly addresses the development of tools to validate NetApps. To accomplish this, this document introduces two different mechanisms for validating NetApps. The first tool is responsible for statically validate the NetApps before they are deployed in 5GASP’s testbeds, being denominated by NetApp Package Validator. Regarding this tool, during this document the focus is its Descriptors Validator Module, which validates the NetApp descriptors through syntactic, semantics, and reference validation and supports NetApps developed according to different Information Models. The second tool comprises an automated validation pipeline. This pipeline validates the functionality and the behavior of the NetApps once they are deployed in a 5G-testbed. Besides, it collects several metrics to enable a better understanding of the NetApp’s behavior. Both tools are expected to be integrated with the 5GASP’s ecosystem. This document presents the requirements definition, architecture, and implementation of these tools and presents their results and outputs. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-24T00:00:00Z 2021-11-24 2022-04-05T12:27:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/33621 |
url |
http://hdl.handle.net/10773/33621 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137705601269760 |