Enhance the Injection Molding Quality Prediction with Artificial Intelligence to Reach Zero-Defect Manufacturing
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/150797 |
Resumo: | Publisher Copyright: © 2022 by the authors. |
id |
RCAP_7c05ec53a0834f635fbd4acb24baa01d |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/150797 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Enhance the Injection Molding Quality Prediction with Artificial Intelligence to Reach Zero-Defect ManufacturingArtificial IntelligenceData AugmentationHuman-in-the-Loop labelinginjection moldingOEEpredictive qualityBioengineeringChemical Engineering (miscellaneous)Process Chemistry and TechnologySDG 12 - Responsible Consumption and ProductionPublisher Copyright: © 2022 by the authors.With the spread of the Industry 4.0 concept, implementing Artificial Intelligence approaches on the shop floor that allow companies to increase their competitiveness in the market is starting to be prioritized. Due to the complexity of the processes used in the industry, the inclusion of a real-time Quality Prediction methodology avoids a considerable number of costs to companies. This paper exposes the whole process of introducing Artificial Intelligence in plastic injection molding processes in a company in Portugal. All the implementations and methodologies used are presented, from data collection to real-time classification, such as Data Augmentation and Human-in-the-Loop labeling, among others. This approach also allows predicting and alerting with regard to process quality loss. This leads to a reduction in the production of non-compliant parts, which increases productivity and reduces costs and environmental footprint. In order to understand the applicability of this system, it was tested in different injection molding processes (traditional and stretch and blow) and with different materials and products. The results of this document show that, with the approach developed and presented, it was possible to achieve an increase in Overall Equipment Effectiveness (OEE) of up to 12%, a reduction in the process downtime of up to 9% and a significant reduction in the number of non-conforming parts produced. This improvement in key performance indicators proves the potential of this solution.DEE - Departamento de Engenharia Electrotécnica e de ComputadoresUNINOVA-Instituto de Desenvolvimento de Novas TecnologiasCTS - Centro de Tecnologia e SistemasRUNSilva, BrunoMarques, RubenFaustino, DinisIlheu, PauloSantos, TiagoSousa, JoãoRocha, André Dionisio2023-03-17T22:30:57Z2022-12-272022-12-27T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article24application/pdfhttp://hdl.handle.net/10362/150797eng2227-9717PURE: 56193559https://doi.org/10.3390/pr11010062info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:33:13Zoai:run.unl.pt:10362/150797Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:54:19.468369Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Enhance the Injection Molding Quality Prediction with Artificial Intelligence to Reach Zero-Defect Manufacturing |
title |
Enhance the Injection Molding Quality Prediction with Artificial Intelligence to Reach Zero-Defect Manufacturing |
spellingShingle |
Enhance the Injection Molding Quality Prediction with Artificial Intelligence to Reach Zero-Defect Manufacturing Silva, Bruno Artificial Intelligence Data Augmentation Human-in-the-Loop labeling injection molding OEE predictive quality Bioengineering Chemical Engineering (miscellaneous) Process Chemistry and Technology SDG 12 - Responsible Consumption and Production |
title_short |
Enhance the Injection Molding Quality Prediction with Artificial Intelligence to Reach Zero-Defect Manufacturing |
title_full |
Enhance the Injection Molding Quality Prediction with Artificial Intelligence to Reach Zero-Defect Manufacturing |
title_fullStr |
Enhance the Injection Molding Quality Prediction with Artificial Intelligence to Reach Zero-Defect Manufacturing |
title_full_unstemmed |
Enhance the Injection Molding Quality Prediction with Artificial Intelligence to Reach Zero-Defect Manufacturing |
title_sort |
Enhance the Injection Molding Quality Prediction with Artificial Intelligence to Reach Zero-Defect Manufacturing |
author |
Silva, Bruno |
author_facet |
Silva, Bruno Marques, Ruben Faustino, Dinis Ilheu, Paulo Santos, Tiago Sousa, João Rocha, André Dionisio |
author_role |
author |
author2 |
Marques, Ruben Faustino, Dinis Ilheu, Paulo Santos, Tiago Sousa, João Rocha, André Dionisio |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
DEE - Departamento de Engenharia Electrotécnica e de Computadores UNINOVA-Instituto de Desenvolvimento de Novas Tecnologias CTS - Centro de Tecnologia e Sistemas RUN |
dc.contributor.author.fl_str_mv |
Silva, Bruno Marques, Ruben Faustino, Dinis Ilheu, Paulo Santos, Tiago Sousa, João Rocha, André Dionisio |
dc.subject.por.fl_str_mv |
Artificial Intelligence Data Augmentation Human-in-the-Loop labeling injection molding OEE predictive quality Bioengineering Chemical Engineering (miscellaneous) Process Chemistry and Technology SDG 12 - Responsible Consumption and Production |
topic |
Artificial Intelligence Data Augmentation Human-in-the-Loop labeling injection molding OEE predictive quality Bioengineering Chemical Engineering (miscellaneous) Process Chemistry and Technology SDG 12 - Responsible Consumption and Production |
description |
Publisher Copyright: © 2022 by the authors. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-27 2022-12-27T00:00:00Z 2023-03-17T22:30:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/150797 |
url |
http://hdl.handle.net/10362/150797 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2227-9717 PURE: 56193559 https://doi.org/10.3390/pr11010062 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
24 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138132419936256 |