Modeling malaria cases associated with environmental risk factors in Ethiopia using geographically weighted regression
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/95138 |
Resumo: | Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial Technologies |
id |
RCAP_7c1d1422fb7a43009e8336f361693536 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/95138 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modeling malaria cases associated with environmental risk factors in Ethiopia using geographically weighted regressionEthiopiaMalaria casesNon-stationarySpatial heterogeneityRisk factorsGeographically weighted regressionDissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesIn Ethiopia, still, malaria is killing and affecting a lot of people of any age group somewhere in the country at any time. However, due to limited research, little is known about the spatial patterns and correlated risk factors on the wards scale. In this research, we explored spatial patterns and evaluated related potential environmental risk factors in the distribution of malaria cases in Ethiopia in 2015 and 2016. Hot Spot Analysis (Getis-Ord Gi* statistic) was used to assess the clustering patterns of the disease. The ordinary least square (OLS), geographically weighted regression (GWR), and semiparametric geographically weighted regression (s-GWR) models were compared to describe the spatial association of potential environmental risk factors with malaria cases. Our results revealed a heterogeneous and highly clustered distribution of malaria cases in Ethiopia during the study period. The s-GWR model best explained the spatial correlation of potential risk factors with malaria cases and was used to produce predictive maps. The GWR model revealed that the relationship between malaria cases and elevation, temperature, precipitation, relative humidity, and normalized difference vegetation index (NDVI) varied significantly among the wards. During the study period, the s-GWR model provided a similar conclusion, except in the case of NDVI in 2015, and elevation and temperature in 2016, which were found to have a global relationship with malaria cases. Hence, precipitation and relative humidity exhibited a varying relationship with malaria cases among the wards in both years. This finding could be used in the formulation and execution of evidence-based malaria control and management program to allocate scare resources locally at the wards level. Moreover, these study results provide a scientific basis for malaria researchers in the country.Mateu Mahiques, JorgeCosta, Ana Cristina Marinho daVerdoy, Pablo JuanRUNDadi, Berhanu Berga2020-03-27T08:29:50Z2020-03-052020-03-05T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/95138TID:202464989enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:43:09Zoai:run.unl.pt:10362/95138Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:38:14.240835Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modeling malaria cases associated with environmental risk factors in Ethiopia using geographically weighted regression |
title |
Modeling malaria cases associated with environmental risk factors in Ethiopia using geographically weighted regression |
spellingShingle |
Modeling malaria cases associated with environmental risk factors in Ethiopia using geographically weighted regression Dadi, Berhanu Berga Ethiopia Malaria cases Non-stationary Spatial heterogeneity Risk factors Geographically weighted regression |
title_short |
Modeling malaria cases associated with environmental risk factors in Ethiopia using geographically weighted regression |
title_full |
Modeling malaria cases associated with environmental risk factors in Ethiopia using geographically weighted regression |
title_fullStr |
Modeling malaria cases associated with environmental risk factors in Ethiopia using geographically weighted regression |
title_full_unstemmed |
Modeling malaria cases associated with environmental risk factors in Ethiopia using geographically weighted regression |
title_sort |
Modeling malaria cases associated with environmental risk factors in Ethiopia using geographically weighted regression |
author |
Dadi, Berhanu Berga |
author_facet |
Dadi, Berhanu Berga |
author_role |
author |
dc.contributor.none.fl_str_mv |
Mateu Mahiques, Jorge Costa, Ana Cristina Marinho da Verdoy, Pablo Juan RUN |
dc.contributor.author.fl_str_mv |
Dadi, Berhanu Berga |
dc.subject.por.fl_str_mv |
Ethiopia Malaria cases Non-stationary Spatial heterogeneity Risk factors Geographically weighted regression |
topic |
Ethiopia Malaria cases Non-stationary Spatial heterogeneity Risk factors Geographically weighted regression |
description |
Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial Technologies |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03-27T08:29:50Z 2020-03-05 2020-03-05T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/95138 TID:202464989 |
url |
http://hdl.handle.net/10362/95138 |
identifier_str_mv |
TID:202464989 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137998852325376 |