Melanoma cells cytotoxic response to different upconversion nanoparticles and hyperthermia

Detalhes bibliográficos
Autor(a) principal: Brandão, David Pinto
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/30962
Resumo: Melanoma is one of the most aggressive types of skin cancer with a high mortality rate. Therefore, there has been an increasing demand for new therapeutic approaches to counteract such elevated rates. Hyperthermia is a therapeutic approach that works by raising the temperature inside of the tumour, ranging between 41 and 45 ºC. The temperature increase may disrupt the biochemical processes of the tumour cells, which in turn can translate into cellular death either by apoptosis or necrosis. However, this promising therapeutic therapy has some hurdles, especially regarding the homogeneous distribution of heat throughout the tumour. Because of the limitations of this technique, there is a need to create new ways of applying it with higher efficiency. Nanoparticles can be used to induce hyperthermia, and they have the upside of being able to be fine-tuned in order to specifically target the tumour and apply heat from inside-out. Various types of nanoparticles have been used to generate hyperthermia, but more recently upconversion nanoparticles (UCNPs) have garnered a lot of interest due to their unique characteristics. The objective of this work was to develop the groundwork needed to apply hyperthermia by using UCNPs. To achieve this objective four different melanoma cells lines were used, MNT-1, B16-F10, A375 and SK-MEL-28, along with 2 different types of UCNPs, NaYF4:Yb,Er(20/2%)@mSiO2 (NaYF4UCNPs@mSiO2) and Gd2O3:Yb,Er (Gd2O3UCNPs). Prior to every assay, both types of UCNPs were dispersed in ultrasound bath for 20 minutes. Physicochemical characterization of nanoparticles was performed by dynamic light scattering (DLS) for NaYF4UCNPs@mSiO2 nanoparticles size and morphology was also assessed by Scanning transmission electron microscopy (STEM). DLS results of Gd2O3UCNPs showed high values of hydrodynamic diameter and polydispersity index, indicating agglomeration of the nanoparticles. Furthermore, zeta potential showed a low value, indicating the instability of the nanoparticles and tendency to aggregate. DLS results of NaYF4UCNPs@mSiO2 showed acceptable values of hydrodynamic diameter, with low values of polydispersity index indicating a more uniform size of nanoparticles. Zeta potential of NaYF4UCNPs@mSiO2 indicate that they have incipient stability at 25 μg/mL, and lower stability at 100 μg/mL. STEM imaging and analysis indicated size of 77.78 ± 3.53 nm. Cytotoxicity of both UCNPs were tested by WST-8 protocol, with Gd2O3UCNPs being tested on MNT-1 and A375 cell lines, and NaYF4UCNPs@mSiO2 being tested on the four cell lines mentioned above. In both cases, cells were exposed to 12,5, 25, 50, 100 and 200 μg/mL of UCNPs. Gd2O3UCNPs caused a decrease in the viability of A375 at the highest concentrations after 48 hours of exposure, compared to the control group. NaYF4UCNPs@mSiO2 caused a decrease in cell viability for all cell lines for 100 and 200 μg/mL after 24 and 48 hours, with MNT-1 cells also having a decrease of viability at 25 and 50 μg/mL for 48 hours after the exposure. A375 cells have a decrease of viability for 50 μg/mL at 48 hours after the exposure. Cellular uptake of NaYF4UCNPs@mSiO2 only happened on MNT-1 and SK-MEL-28 cell lines. Hyperthermia sensitivity profile of MNT-1 and A375 cell lines was performed by exposure to 43 and 45 ºC during 30, 60 and 120 minutes, and cell viability measured 24, 48 and 72 hours after exposure through the MTT assay. In almost every case MNT-1 cell viability decreased with the increase of exposure time where, after 120 minutes of exposure, cell viability was below 60% for all the exposure times in both of the tested temperatures. Comparatively, A375 cells exposed to 43 ºC did not have viability lower than 60% in all cases. Finally, MNT-1 cells exposed to 45 ºC for 120 minutes showed viability values below 20% after 48 and 72 hours, while on the other hand, A375 cells viability ranged from 40 to 60%, depending on the exposure time. This work allowed to set a range of concentrations of UCNPs that can be used without compromising cell viability, being good candidates for near-infrared induced hyperthermia to melanoma cells. This work also allowed to conclude which temperatures and exposure times to apply in order to potentiate the effect of hyperthermia in melanoma cells. The conditions defined in the current work (UCNPs concentrations and temperatures) can be replicated to generate near-infrared light-triggered hyperthermia in melanoma cells using UCNPs.
id RCAP_7c2198e6cdedec3892c09eca3f439fa7
oai_identifier_str oai:ria.ua.pt:10773/30962
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Melanoma cells cytotoxic response to different upconversion nanoparticles and hyperthermiaHyperthermiaMelanomaNaYF4:YbEr (20/2%)@mSiO2Gd2O3:YbErCytotoxicityUpconversion nanoparticlesMelanoma is one of the most aggressive types of skin cancer with a high mortality rate. Therefore, there has been an increasing demand for new therapeutic approaches to counteract such elevated rates. Hyperthermia is a therapeutic approach that works by raising the temperature inside of the tumour, ranging between 41 and 45 ºC. The temperature increase may disrupt the biochemical processes of the tumour cells, which in turn can translate into cellular death either by apoptosis or necrosis. However, this promising therapeutic therapy has some hurdles, especially regarding the homogeneous distribution of heat throughout the tumour. Because of the limitations of this technique, there is a need to create new ways of applying it with higher efficiency. Nanoparticles can be used to induce hyperthermia, and they have the upside of being able to be fine-tuned in order to specifically target the tumour and apply heat from inside-out. Various types of nanoparticles have been used to generate hyperthermia, but more recently upconversion nanoparticles (UCNPs) have garnered a lot of interest due to their unique characteristics. The objective of this work was to develop the groundwork needed to apply hyperthermia by using UCNPs. To achieve this objective four different melanoma cells lines were used, MNT-1, B16-F10, A375 and SK-MEL-28, along with 2 different types of UCNPs, NaYF4:Yb,Er(20/2%)@mSiO2 (NaYF4UCNPs@mSiO2) and Gd2O3:Yb,Er (Gd2O3UCNPs). Prior to every assay, both types of UCNPs were dispersed in ultrasound bath for 20 minutes. Physicochemical characterization of nanoparticles was performed by dynamic light scattering (DLS) for NaYF4UCNPs@mSiO2 nanoparticles size and morphology was also assessed by Scanning transmission electron microscopy (STEM). DLS results of Gd2O3UCNPs showed high values of hydrodynamic diameter and polydispersity index, indicating agglomeration of the nanoparticles. Furthermore, zeta potential showed a low value, indicating the instability of the nanoparticles and tendency to aggregate. DLS results of NaYF4UCNPs@mSiO2 showed acceptable values of hydrodynamic diameter, with low values of polydispersity index indicating a more uniform size of nanoparticles. Zeta potential of NaYF4UCNPs@mSiO2 indicate that they have incipient stability at 25 μg/mL, and lower stability at 100 μg/mL. STEM imaging and analysis indicated size of 77.78 ± 3.53 nm. Cytotoxicity of both UCNPs were tested by WST-8 protocol, with Gd2O3UCNPs being tested on MNT-1 and A375 cell lines, and NaYF4UCNPs@mSiO2 being tested on the four cell lines mentioned above. In both cases, cells were exposed to 12,5, 25, 50, 100 and 200 μg/mL of UCNPs. Gd2O3UCNPs caused a decrease in the viability of A375 at the highest concentrations after 48 hours of exposure, compared to the control group. NaYF4UCNPs@mSiO2 caused a decrease in cell viability for all cell lines for 100 and 200 μg/mL after 24 and 48 hours, with MNT-1 cells also having a decrease of viability at 25 and 50 μg/mL for 48 hours after the exposure. A375 cells have a decrease of viability for 50 μg/mL at 48 hours after the exposure. Cellular uptake of NaYF4UCNPs@mSiO2 only happened on MNT-1 and SK-MEL-28 cell lines. Hyperthermia sensitivity profile of MNT-1 and A375 cell lines was performed by exposure to 43 and 45 ºC during 30, 60 and 120 minutes, and cell viability measured 24, 48 and 72 hours after exposure through the MTT assay. In almost every case MNT-1 cell viability decreased with the increase of exposure time where, after 120 minutes of exposure, cell viability was below 60% for all the exposure times in both of the tested temperatures. Comparatively, A375 cells exposed to 43 ºC did not have viability lower than 60% in all cases. Finally, MNT-1 cells exposed to 45 ºC for 120 minutes showed viability values below 20% after 48 and 72 hours, while on the other hand, A375 cells viability ranged from 40 to 60%, depending on the exposure time. This work allowed to set a range of concentrations of UCNPs that can be used without compromising cell viability, being good candidates for near-infrared induced hyperthermia to melanoma cells. This work also allowed to conclude which temperatures and exposure times to apply in order to potentiate the effect of hyperthermia in melanoma cells. The conditions defined in the current work (UCNPs concentrations and temperatures) can be replicated to generate near-infrared light-triggered hyperthermia in melanoma cells using UCNPs.O melanoma é um dos tipos de cancro da pele mais agressivos e com uma alta taxa de mortalidade. Portanto, tem havido uma demanda crescente de novas abordagens terapêuticas para neutralizar taxas tão elevadas. A hipertermia é uma abordagem terapêutica que atua ao aumentar a temperatura dentro do tumor, desde 41 a 45 ºC. O aumento da temperatura pode interromper os processos bioquímicos das células tumorais, que por sua vez pode se traduzir em morte celular por apoptose ou necrose. No entanto, apesar de promissora, a hipertermia tem alguns obstáculos, especialmente manter uma distribuição homogênea de calor por todo o tumor. Devido às limitações desta técnica, há necessidade de criar novas formas de aplicá-la com alta eficiência. As nanopartículas podem ser usadas para induzir hipertermia, e têm a vantagem de poderem ser ajustadas especificamente para o tumor, e dessa forma aplicar calor de dentro para fora do tumor. Vários tipos de nanopartículas têm sido usados para gerar hipertermia, mas, mais recentemente, as nanopartículas de conversão ascendente (UCNPs) têm atraído muito interesse por causa das suas características únicas. O objetivo deste trabalho foi desenvolver as bases necessárias para aplicar a hipertermia usando UCNPs. Para atingir este objetivo, quatro linhas de células de melanoma diferentes foram utilizadas, MNT-1, B16-F10, A375 e SK-MEL-28, juntamente com 2 tipos diferentes de UCNPs, NaYF4:Yb,Er (20/2%)@mSiO2 (NaYF4UCNPs@mSiO2) e Gd2O3:Yb,Er (Gd2O3UCNPs). Antes de cada ensaio, ambos os tipos de UCNPs foram dispersas num banho de ultrasons durante 20 minutes. A caracterização físico-química das nanopartículas foi realizada por espalhamento dinâmico de luz (DLS) para NaYF4UCNPs@mSiO2 tamanho das nanopartículas e morfologia também foi avaliada por microscopia eletrónica de transmissão de varrimento (STEM). Os resultados de DLS de Gd2O3UCNPs mostraram altos valores de diâmetro hidrodinâmico e índice de polidispersidade, indicando aglomeração das nanopartículas. Além disso, o potencial zeta apresentou baixo valor, indicando a instabilidade das nanopartículas e tendência de agregação. Os resultados de DLS de NaYF4UCNPs@mSiO2 mostraram valores aceitáveis de diâmetro hidrodinâmico, com baixos valores de índice de polidispersidade indicando um tamanho mais uniforme de nanopartículas. O potencial zeta de NaYF4UCNPs@mSiO2 indica que eles têm estabilidade incipiente a 25 μg/mL e estabilidade inferior a 100 μg/mL. A imagem e análise STEM indicaram tamanho de 77.78 ± 3.53 nm. A citotoxicidade de ambos os UCNPs foi testada pelo protocolo WST-8, com Gd2O3UCNPs sendo testados nas linhas celulares MNT-1 e A375, e NaYF4UCNPs@mSiO2 sendo testados nas quatro linhas celulares mencionadas acima. Em ambos os casos, as células foram expostas a 12,5, 25, 50, 100 e 200 μg/mL de UCNPs. Gd2O3UCNPs causou uma diminuição na viabilidade de A375 nas maiores concentrações após 48 horas de exposição, em comparação com o grupo de controle. NaYF4UCNPs@mSiO2 causou uma diminuição na viabilidade celular para todas as linhas celulares para 100 e 200 μg/mL após 24 e 48 horas, com as células MNT-1 também tendo uma diminuição da viabilidade em 25 e 50 μg/mL por 48 horas após a exposição. As células A375 têm uma diminuição da viabilidade para 50 μg/mL em 48 horas após a exposição. A internalização das NaYF4UCNPs@mSiO2 só aconteceu nas linhas celulares MNT-1 e SK-MEL-28. O perfil de sensibilidade à hipertermia das linhagens celulares MNT-1 e A375 foi realizado pela exposição a 43 e 45 ºC por 30, 60 e 120 minutos, e a viabilidade celular medida 24, 48 e 72 horas após a exposição por meio do ensaio MTT. Em quase todos os casos a viabilidade celular MNT-1 diminuiu com o aumento do tempo de exposição onde, após 120 minutos de exposição, a viabilidade celular ficou abaixo de 60% para todos os tempos de exposição em ambas as temperaturas testadas. Comparativamente, as células A375 expostas a 43 ºC não tiveram viabilidade inferior a 60% em todos os casos. Por fim, as células MNT-1 expostas a 45 ºC por 120 minutos apresentaram valores de viabilidade abaixo de 20% após 48 e 72 horas, enquanto, por outro lado, a viabilidade das células A375 variou de 40 a 60%, dependendo do tempo de exposição. Este trabalho permitiu definir um intervalo de concentrações de UCNPs que podem ser usados sem comprometer a viabilidade celular, sendo bons candidatos para hipertermia induzida por radiação próxima do infravermelho para células de melanoma. Este trabalho também permitiu concluir quais temperaturas e tempos de exposição aplicar para potencializar o efeito da hipertermia em células de melanoma. As condições definidas no trabalho atual (concentrações e temperaturas de UCNPs) podem ser replicadas para gerar hipertermia desencadeada por radiação no infravermelho próximo em células de melanoma usando UCNPs.2021-03-19T14:37:22Z2021-02-25T00:00:00Z2021-02-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/30962engBrandão, David Pintoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:59:51Zoai:ria.ua.pt:10773/30962Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:58.466037Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Melanoma cells cytotoxic response to different upconversion nanoparticles and hyperthermia
title Melanoma cells cytotoxic response to different upconversion nanoparticles and hyperthermia
spellingShingle Melanoma cells cytotoxic response to different upconversion nanoparticles and hyperthermia
Brandão, David Pinto
Hyperthermia
Melanoma
NaYF4:Yb
Er (20/2%)@mSiO2
Gd2O3:Yb
Er
Cytotoxicity
Upconversion nanoparticles
title_short Melanoma cells cytotoxic response to different upconversion nanoparticles and hyperthermia
title_full Melanoma cells cytotoxic response to different upconversion nanoparticles and hyperthermia
title_fullStr Melanoma cells cytotoxic response to different upconversion nanoparticles and hyperthermia
title_full_unstemmed Melanoma cells cytotoxic response to different upconversion nanoparticles and hyperthermia
title_sort Melanoma cells cytotoxic response to different upconversion nanoparticles and hyperthermia
author Brandão, David Pinto
author_facet Brandão, David Pinto
author_role author
dc.contributor.author.fl_str_mv Brandão, David Pinto
dc.subject.por.fl_str_mv Hyperthermia
Melanoma
NaYF4:Yb
Er (20/2%)@mSiO2
Gd2O3:Yb
Er
Cytotoxicity
Upconversion nanoparticles
topic Hyperthermia
Melanoma
NaYF4:Yb
Er (20/2%)@mSiO2
Gd2O3:Yb
Er
Cytotoxicity
Upconversion nanoparticles
description Melanoma is one of the most aggressive types of skin cancer with a high mortality rate. Therefore, there has been an increasing demand for new therapeutic approaches to counteract such elevated rates. Hyperthermia is a therapeutic approach that works by raising the temperature inside of the tumour, ranging between 41 and 45 ºC. The temperature increase may disrupt the biochemical processes of the tumour cells, which in turn can translate into cellular death either by apoptosis or necrosis. However, this promising therapeutic therapy has some hurdles, especially regarding the homogeneous distribution of heat throughout the tumour. Because of the limitations of this technique, there is a need to create new ways of applying it with higher efficiency. Nanoparticles can be used to induce hyperthermia, and they have the upside of being able to be fine-tuned in order to specifically target the tumour and apply heat from inside-out. Various types of nanoparticles have been used to generate hyperthermia, but more recently upconversion nanoparticles (UCNPs) have garnered a lot of interest due to their unique characteristics. The objective of this work was to develop the groundwork needed to apply hyperthermia by using UCNPs. To achieve this objective four different melanoma cells lines were used, MNT-1, B16-F10, A375 and SK-MEL-28, along with 2 different types of UCNPs, NaYF4:Yb,Er(20/2%)@mSiO2 (NaYF4UCNPs@mSiO2) and Gd2O3:Yb,Er (Gd2O3UCNPs). Prior to every assay, both types of UCNPs were dispersed in ultrasound bath for 20 minutes. Physicochemical characterization of nanoparticles was performed by dynamic light scattering (DLS) for NaYF4UCNPs@mSiO2 nanoparticles size and morphology was also assessed by Scanning transmission electron microscopy (STEM). DLS results of Gd2O3UCNPs showed high values of hydrodynamic diameter and polydispersity index, indicating agglomeration of the nanoparticles. Furthermore, zeta potential showed a low value, indicating the instability of the nanoparticles and tendency to aggregate. DLS results of NaYF4UCNPs@mSiO2 showed acceptable values of hydrodynamic diameter, with low values of polydispersity index indicating a more uniform size of nanoparticles. Zeta potential of NaYF4UCNPs@mSiO2 indicate that they have incipient stability at 25 μg/mL, and lower stability at 100 μg/mL. STEM imaging and analysis indicated size of 77.78 ± 3.53 nm. Cytotoxicity of both UCNPs were tested by WST-8 protocol, with Gd2O3UCNPs being tested on MNT-1 and A375 cell lines, and NaYF4UCNPs@mSiO2 being tested on the four cell lines mentioned above. In both cases, cells were exposed to 12,5, 25, 50, 100 and 200 μg/mL of UCNPs. Gd2O3UCNPs caused a decrease in the viability of A375 at the highest concentrations after 48 hours of exposure, compared to the control group. NaYF4UCNPs@mSiO2 caused a decrease in cell viability for all cell lines for 100 and 200 μg/mL after 24 and 48 hours, with MNT-1 cells also having a decrease of viability at 25 and 50 μg/mL for 48 hours after the exposure. A375 cells have a decrease of viability for 50 μg/mL at 48 hours after the exposure. Cellular uptake of NaYF4UCNPs@mSiO2 only happened on MNT-1 and SK-MEL-28 cell lines. Hyperthermia sensitivity profile of MNT-1 and A375 cell lines was performed by exposure to 43 and 45 ºC during 30, 60 and 120 minutes, and cell viability measured 24, 48 and 72 hours after exposure through the MTT assay. In almost every case MNT-1 cell viability decreased with the increase of exposure time where, after 120 minutes of exposure, cell viability was below 60% for all the exposure times in both of the tested temperatures. Comparatively, A375 cells exposed to 43 ºC did not have viability lower than 60% in all cases. Finally, MNT-1 cells exposed to 45 ºC for 120 minutes showed viability values below 20% after 48 and 72 hours, while on the other hand, A375 cells viability ranged from 40 to 60%, depending on the exposure time. This work allowed to set a range of concentrations of UCNPs that can be used without compromising cell viability, being good candidates for near-infrared induced hyperthermia to melanoma cells. This work also allowed to conclude which temperatures and exposure times to apply in order to potentiate the effect of hyperthermia in melanoma cells. The conditions defined in the current work (UCNPs concentrations and temperatures) can be replicated to generate near-infrared light-triggered hyperthermia in melanoma cells using UCNPs.
publishDate 2021
dc.date.none.fl_str_mv 2021-03-19T14:37:22Z
2021-02-25T00:00:00Z
2021-02-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/30962
url http://hdl.handle.net/10773/30962
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137684791230464