Rumo à Autenticação de Dispositivos IoMT através da Classificação de Sinais RF

Detalhes bibliográficos
Autor(a) principal: Monteiro, Stéphane Joaquim Lourenço
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/23710
Resumo: The increasing reliance on the Internet of Medical Things (IoMT) raises great concern in terms of cybersecurity, either at the device’s physical level or at the communication and transmission level. This is particularly important as these systems process very sensitive and private data, including personal health data from multiple patients such as real-time body measurements. Due to these concerns, cybersecurity mechanisms and strategies must be in place to protect these medical systems, defending them from compromising cyberattacks. Authentication is an essential cybersecurity technique for trustworthy IoMT communications. However, current authentication methods rely on upper-layer identity verification or key-based cryptography which can be inadequate to the heterogeneous Internet of Things (IoT) environments. This thesis proposes the development of a Machine Learning (ML) method that serves as a foundation for Radio Frequency Fingerprinting (RFF) in the authentication of IoMT devices in medical applications to improve the flexibility of such mechanisms. This technique allows the authentication of medical devices by their physical layer characteristics, i.e. of their emitted signal. The development of ML models serves as the foundation for RFF, allowing it to evaluate and categorise the released signal and enable RFF authentication. Multiple feature take part of the proposed decision making process of classifying the device, which then is implemented in a medical gateway, resulting in a novel IoMT technology.
id RCAP_7cf11ef312a569b1fe30c5061da771d1
oai_identifier_str oai:recipp.ipp.pt:10400.22/23710
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Rumo à Autenticação de Dispositivos IoMT através da Classificação de Sinais RFTowards Authentication of IoMT Devices via RF Signal ClassificationRFFMLCNNIoMTThe increasing reliance on the Internet of Medical Things (IoMT) raises great concern in terms of cybersecurity, either at the device’s physical level or at the communication and transmission level. This is particularly important as these systems process very sensitive and private data, including personal health data from multiple patients such as real-time body measurements. Due to these concerns, cybersecurity mechanisms and strategies must be in place to protect these medical systems, defending them from compromising cyberattacks. Authentication is an essential cybersecurity technique for trustworthy IoMT communications. However, current authentication methods rely on upper-layer identity verification or key-based cryptography which can be inadequate to the heterogeneous Internet of Things (IoT) environments. This thesis proposes the development of a Machine Learning (ML) method that serves as a foundation for Radio Frequency Fingerprinting (RFF) in the authentication of IoMT devices in medical applications to improve the flexibility of such mechanisms. This technique allows the authentication of medical devices by their physical layer characteristics, i.e. of their emitted signal. The development of ML models serves as the foundation for RFF, allowing it to evaluate and categorise the released signal and enable RFF authentication. Multiple feature take part of the proposed decision making process of classifying the device, which then is implemented in a medical gateway, resulting in a novel IoMT technology.A confiança crescente na IoMT suscita grande preocupação em termos de cibersegurança, quer ao nível físico do dispositivo quer ao nível da comunicação e ao nível de transmissão. Isto é particularmente importante, uma vez que estes sistemas processam dados muito sensíveis e dados, incluindo dados pessoais de saúde de diversos pacientes, tais como dados em tempo real de medidas do corpo. Devido a estas preocupações, os mecanismos e estratégias de ciber-segurança devem estar em vigor para proteger estes sistemas médicos, defendendo-os de ciberataques comprometedores. A autenticação é uma técnica essencial de ciber-segurança para garantir as comunicações em sistemas IoMT de confiança. No entanto, os métodos de autenticação atuais focam-se na verificação de identidade na camada superior ou criptografia baseada em chaves que podem ser inadequadas para a ambientes IoMT heterogéneos. Esta tese propõe o desenvolvimento de um método de ML que serve como base para o RFF na autenticação de dispositivos IoMT para melhorar a flexibilidade de tais mecanismos. Isto permite a autenticação dos dispositivos médicos pelas suas características de camada física, ou seja, a partir do seu sinal emitido. O desenvolvimento de modelos de ML serve de base para o RFF, permitindo-lhe avaliar e categorizar o sinal libertado e permitir a autenticação do RFF. Múltiplas features fazem parte do processo de tomada de decisão proposto para classificar o dispositivo, que é implementada num gateway médico, resultando numa nova tecnologia IoMT.Severino, Ricardo Augusto Rodrigues da SilvaRepositório Científico do Instituto Politécnico do PortoMonteiro, Stéphane Joaquim Lourenço2023-10-18T15:04:21Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/23710TID:203367570enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-25T01:46:44Zoai:recipp.ipp.pt:10400.22/23710Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:39:27.455192Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Rumo à Autenticação de Dispositivos IoMT através da Classificação de Sinais RF
Towards Authentication of IoMT Devices via RF Signal Classification
title Rumo à Autenticação de Dispositivos IoMT através da Classificação de Sinais RF
spellingShingle Rumo à Autenticação de Dispositivos IoMT através da Classificação de Sinais RF
Monteiro, Stéphane Joaquim Lourenço
RFF
ML
CNN
IoMT
title_short Rumo à Autenticação de Dispositivos IoMT através da Classificação de Sinais RF
title_full Rumo à Autenticação de Dispositivos IoMT através da Classificação de Sinais RF
title_fullStr Rumo à Autenticação de Dispositivos IoMT através da Classificação de Sinais RF
title_full_unstemmed Rumo à Autenticação de Dispositivos IoMT através da Classificação de Sinais RF
title_sort Rumo à Autenticação de Dispositivos IoMT através da Classificação de Sinais RF
author Monteiro, Stéphane Joaquim Lourenço
author_facet Monteiro, Stéphane Joaquim Lourenço
author_role author
dc.contributor.none.fl_str_mv Severino, Ricardo Augusto Rodrigues da Silva
Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Monteiro, Stéphane Joaquim Lourenço
dc.subject.por.fl_str_mv RFF
ML
CNN
IoMT
topic RFF
ML
CNN
IoMT
description The increasing reliance on the Internet of Medical Things (IoMT) raises great concern in terms of cybersecurity, either at the device’s physical level or at the communication and transmission level. This is particularly important as these systems process very sensitive and private data, including personal health data from multiple patients such as real-time body measurements. Due to these concerns, cybersecurity mechanisms and strategies must be in place to protect these medical systems, defending them from compromising cyberattacks. Authentication is an essential cybersecurity technique for trustworthy IoMT communications. However, current authentication methods rely on upper-layer identity verification or key-based cryptography which can be inadequate to the heterogeneous Internet of Things (IoT) environments. This thesis proposes the development of a Machine Learning (ML) method that serves as a foundation for Radio Frequency Fingerprinting (RFF) in the authentication of IoMT devices in medical applications to improve the flexibility of such mechanisms. This technique allows the authentication of medical devices by their physical layer characteristics, i.e. of their emitted signal. The development of ML models serves as the foundation for RFF, allowing it to evaluate and categorise the released signal and enable RFF authentication. Multiple feature take part of the proposed decision making process of classifying the device, which then is implemented in a medical gateway, resulting in a novel IoMT technology.
publishDate 2023
dc.date.none.fl_str_mv 2023-10-18T15:04:21Z
2023
2023-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/23710
TID:203367570
url http://hdl.handle.net/10400.22/23710
identifier_str_mv TID:203367570
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133656047943680