Machine learning classification of human gait disorders
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/33934 |
Resumo: | Computerized human gait analysis is commonly used by researchers and physicians to detect disorders, evaluate therapy progress, or improve athletic performance. Advances in instrument and measurement technology has allowed the quantification of human gait characteristics, such as kinematic and kinetic parameters, electromyographic activity and energy consumption. In particular, the quantification of ground reaction forces (GRFs) has proved to be an important tool in the healthcare context. However, the extraction of meaningful features and their interpretation from the amount of complex data is still a challenging task. Consequently, machine learning methods are becoming popular to deal with the high-dimensionality, temporal dependencies, strong variability, and non-linear relationships present in human gait data. This dissertation aims to study the application of machine learning techniques for the classification of human gait disorders, using the annotated GaitRec dataset. The dataset contains bi-lateral 3D-GRF data from healthy individuals, as well from patients with musculoskeletal impairments at the hip, knee, ankle and calcaneus. This work addresses the custom development of classification models capable of differentiating normal vs. abnormal gait patterns (binary problem), as well as classifying pathological gait disorders (multi-class problem). The focus is on the comparison between classical fully-connected models and 1D convolutional neural networks (CNNs), in terms of prediction accuracy. Additionally, pre-processed time series are converted into a two-dimensional input image, which is applied to a 2D-CNN to explore asymmetries in bilateral GRFs. The results obtained show that the fully-connected model outperforms in 1% the 1DCNN model. The binary classifier achieved a prediction accuracy around 99.0%, while the multi-class accuracy score is around 97.2%. The preliminary results achieved with the image-based 2-D CNN are much lower which may indicate that additional efforts will be needed to take advantage of this approach. |
id |
RCAP_7d53d4fb5243b7a2eebf5ff965047162 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/33934 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Machine learning classification of human gait disordersHuman gait disordersGround reaction forcesTime series classificationMultilayer perceptronConvolutional neural networksComputerized human gait analysis is commonly used by researchers and physicians to detect disorders, evaluate therapy progress, or improve athletic performance. Advances in instrument and measurement technology has allowed the quantification of human gait characteristics, such as kinematic and kinetic parameters, electromyographic activity and energy consumption. In particular, the quantification of ground reaction forces (GRFs) has proved to be an important tool in the healthcare context. However, the extraction of meaningful features and their interpretation from the amount of complex data is still a challenging task. Consequently, machine learning methods are becoming popular to deal with the high-dimensionality, temporal dependencies, strong variability, and non-linear relationships present in human gait data. This dissertation aims to study the application of machine learning techniques for the classification of human gait disorders, using the annotated GaitRec dataset. The dataset contains bi-lateral 3D-GRF data from healthy individuals, as well from patients with musculoskeletal impairments at the hip, knee, ankle and calcaneus. This work addresses the custom development of classification models capable of differentiating normal vs. abnormal gait patterns (binary problem), as well as classifying pathological gait disorders (multi-class problem). The focus is on the comparison between classical fully-connected models and 1D convolutional neural networks (CNNs), in terms of prediction accuracy. Additionally, pre-processed time series are converted into a two-dimensional input image, which is applied to a 2D-CNN to explore asymmetries in bilateral GRFs. The results obtained show that the fully-connected model outperforms in 1% the 1DCNN model. The binary classifier achieved a prediction accuracy around 99.0%, while the multi-class accuracy score is around 97.2%. The preliminary results achieved with the image-based 2-D CNN are much lower which may indicate that additional efforts will be needed to take advantage of this approach.A análise computadorizada da marcha humana é normalmente usada por investigadores e médicos para detetar distúrbios, avaliar o progresso da terapia ou melhorar o desempenho atlético. Os avanços da tecnologia e dos instrumentos de medidas têm permitido a quantificação das características da marcha humana, como parâmetros cinemáticos e cinéticos, atividade eletromiografia e consumo de energia. Em particular, a quantificação das for,cas de reação do solo (FRS) têm se revelado uma ferramenta importante no contexto da saúde. No entanto, a extração de características significativos e a sua interpretação a partir de grandes quantidades de dados ainda é uma tarefa desafiadora. Consequentemente, os métodos de aprendizagem automática estão a tornar-se populares para lidar com a alta dimensionalidade, dependências temporais, grande variabilidade e relações não lineares presentes nos dados de marcha humana. Esta dissertação tem como objetivo estudar a aplicação de técnicas de aprendizagem automática na classificação de distúrbios da marcha humana, utilizando o dataset anotado GaitRec. O dataset contém dados bilaterais 3D-FRS de indivíduos saudáveis, bem como de pacientes com lesões musculoesqueléticas no quadril, joelho, tornozelo e calcanhar. Este trabalho aborda o desenvolvimento de modelos de classificação capazes de diferenciar padrões de marcha normais vs. anormais (problema binário), bem como classificar distúrbios patológicos da marcha (problema multiclasse). O estudo está centrado na comparação entre os modelos clássicos totalmente conetados e as redes neurais convulsionais (CNNs). Adicionalmente, as séries temporais são pré-processadas e convertidas numa imagem bidimensional que é aplicada a uma rede convolucional 2D para explorar assimetrias nas FRS bilaterais. Os resultados obtidos mostram que a rede com múltiplas camadas totalmente conetadas supera em 1% a rede convolucional. O classificador binário alcançou uma precisão em torno de 99,0%, enquanto a precisão do modelo multiclasse ´e de cerca de 97,2%. Os resultados preliminares obtidos com a rede convolucional 2-D baseada em imagens são inferiores, o que pode indicar que são necessários esforços adicionais para tirar proveito dessa abordagem.2022-05-23T09:34:49Z2021-11-25T00:00:00Z2021-11-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/33934engVentuzelos, João Pedro Diasinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:05:17Zoai:ria.ua.pt:10773/33934Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:17.028229Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Machine learning classification of human gait disorders |
title |
Machine learning classification of human gait disorders |
spellingShingle |
Machine learning classification of human gait disorders Ventuzelos, João Pedro Dias Human gait disorders Ground reaction forces Time series classification Multilayer perceptron Convolutional neural networks |
title_short |
Machine learning classification of human gait disorders |
title_full |
Machine learning classification of human gait disorders |
title_fullStr |
Machine learning classification of human gait disorders |
title_full_unstemmed |
Machine learning classification of human gait disorders |
title_sort |
Machine learning classification of human gait disorders |
author |
Ventuzelos, João Pedro Dias |
author_facet |
Ventuzelos, João Pedro Dias |
author_role |
author |
dc.contributor.author.fl_str_mv |
Ventuzelos, João Pedro Dias |
dc.subject.por.fl_str_mv |
Human gait disorders Ground reaction forces Time series classification Multilayer perceptron Convolutional neural networks |
topic |
Human gait disorders Ground reaction forces Time series classification Multilayer perceptron Convolutional neural networks |
description |
Computerized human gait analysis is commonly used by researchers and physicians to detect disorders, evaluate therapy progress, or improve athletic performance. Advances in instrument and measurement technology has allowed the quantification of human gait characteristics, such as kinematic and kinetic parameters, electromyographic activity and energy consumption. In particular, the quantification of ground reaction forces (GRFs) has proved to be an important tool in the healthcare context. However, the extraction of meaningful features and their interpretation from the amount of complex data is still a challenging task. Consequently, machine learning methods are becoming popular to deal with the high-dimensionality, temporal dependencies, strong variability, and non-linear relationships present in human gait data. This dissertation aims to study the application of machine learning techniques for the classification of human gait disorders, using the annotated GaitRec dataset. The dataset contains bi-lateral 3D-GRF data from healthy individuals, as well from patients with musculoskeletal impairments at the hip, knee, ankle and calcaneus. This work addresses the custom development of classification models capable of differentiating normal vs. abnormal gait patterns (binary problem), as well as classifying pathological gait disorders (multi-class problem). The focus is on the comparison between classical fully-connected models and 1D convolutional neural networks (CNNs), in terms of prediction accuracy. Additionally, pre-processed time series are converted into a two-dimensional input image, which is applied to a 2D-CNN to explore asymmetries in bilateral GRFs. The results obtained show that the fully-connected model outperforms in 1% the 1DCNN model. The binary classifier achieved a prediction accuracy around 99.0%, while the multi-class accuracy score is around 97.2%. The preliminary results achieved with the image-based 2-D CNN are much lower which may indicate that additional efforts will be needed to take advantage of this approach. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-25T00:00:00Z 2021-11-25 2022-05-23T09:34:49Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/33934 |
url |
http://hdl.handle.net/10773/33934 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137707817959424 |