Machine learning classification of human gait disorders

Detalhes bibliográficos
Autor(a) principal: Ventuzelos, João Pedro Dias
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/33934
Resumo: Computerized human gait analysis is commonly used by researchers and physicians to detect disorders, evaluate therapy progress, or improve athletic performance. Advances in instrument and measurement technology has allowed the quantification of human gait characteristics, such as kinematic and kinetic parameters, electromyographic activity and energy consumption. In particular, the quantification of ground reaction forces (GRFs) has proved to be an important tool in the healthcare context. However, the extraction of meaningful features and their interpretation from the amount of complex data is still a challenging task. Consequently, machine learning methods are becoming popular to deal with the high-dimensionality, temporal dependencies, strong variability, and non-linear relationships present in human gait data. This dissertation aims to study the application of machine learning techniques for the classification of human gait disorders, using the annotated GaitRec dataset. The dataset contains bi-lateral 3D-GRF data from healthy individuals, as well from patients with musculoskeletal impairments at the hip, knee, ankle and calcaneus. This work addresses the custom development of classification models capable of differentiating normal vs. abnormal gait patterns (binary problem), as well as classifying pathological gait disorders (multi-class problem). The focus is on the comparison between classical fully-connected models and 1D convolutional neural networks (CNNs), in terms of prediction accuracy. Additionally, pre-processed time series are converted into a two-dimensional input image, which is applied to a 2D-CNN to explore asymmetries in bilateral GRFs. The results obtained show that the fully-connected model outperforms in 1% the 1DCNN model. The binary classifier achieved a prediction accuracy around 99.0%, while the multi-class accuracy score is around 97.2%. The preliminary results achieved with the image-based 2-D CNN are much lower which may indicate that additional efforts will be needed to take advantage of this approach.
id RCAP_7d53d4fb5243b7a2eebf5ff965047162
oai_identifier_str oai:ria.ua.pt:10773/33934
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Machine learning classification of human gait disordersHuman gait disordersGround reaction forcesTime series classificationMultilayer perceptronConvolutional neural networksComputerized human gait analysis is commonly used by researchers and physicians to detect disorders, evaluate therapy progress, or improve athletic performance. Advances in instrument and measurement technology has allowed the quantification of human gait characteristics, such as kinematic and kinetic parameters, electromyographic activity and energy consumption. In particular, the quantification of ground reaction forces (GRFs) has proved to be an important tool in the healthcare context. However, the extraction of meaningful features and their interpretation from the amount of complex data is still a challenging task. Consequently, machine learning methods are becoming popular to deal with the high-dimensionality, temporal dependencies, strong variability, and non-linear relationships present in human gait data. This dissertation aims to study the application of machine learning techniques for the classification of human gait disorders, using the annotated GaitRec dataset. The dataset contains bi-lateral 3D-GRF data from healthy individuals, as well from patients with musculoskeletal impairments at the hip, knee, ankle and calcaneus. This work addresses the custom development of classification models capable of differentiating normal vs. abnormal gait patterns (binary problem), as well as classifying pathological gait disorders (multi-class problem). The focus is on the comparison between classical fully-connected models and 1D convolutional neural networks (CNNs), in terms of prediction accuracy. Additionally, pre-processed time series are converted into a two-dimensional input image, which is applied to a 2D-CNN to explore asymmetries in bilateral GRFs. The results obtained show that the fully-connected model outperforms in 1% the 1DCNN model. The binary classifier achieved a prediction accuracy around 99.0%, while the multi-class accuracy score is around 97.2%. The preliminary results achieved with the image-based 2-D CNN are much lower which may indicate that additional efforts will be needed to take advantage of this approach.A análise computadorizada da marcha humana é normalmente usada por investigadores e médicos para detetar distúrbios, avaliar o progresso da terapia ou melhorar o desempenho atlético. Os avanços da tecnologia e dos instrumentos de medidas têm permitido a quantificação das características da marcha humana, como parâmetros cinemáticos e cinéticos, atividade eletromiografia e consumo de energia. Em particular, a quantificação das for,cas de reação do solo (FRS) têm se revelado uma ferramenta importante no contexto da saúde. No entanto, a extração de características significativos e a sua interpretação a partir de grandes quantidades de dados ainda é uma tarefa desafiadora. Consequentemente, os métodos de aprendizagem automática estão a tornar-se populares para lidar com a alta dimensionalidade, dependências temporais, grande variabilidade e relações não lineares presentes nos dados de marcha humana. Esta dissertação tem como objetivo estudar a aplicação de técnicas de aprendizagem automática na classificação de distúrbios da marcha humana, utilizando o dataset anotado GaitRec. O dataset contém dados bilaterais 3D-FRS de indivíduos saudáveis, bem como de pacientes com lesões musculoesqueléticas no quadril, joelho, tornozelo e calcanhar. Este trabalho aborda o desenvolvimento de modelos de classificação capazes de diferenciar padrões de marcha normais vs. anormais (problema binário), bem como classificar distúrbios patológicos da marcha (problema multiclasse). O estudo está centrado na comparação entre os modelos clássicos totalmente conetados e as redes neurais convulsionais (CNNs). Adicionalmente, as séries temporais são pré-processadas e convertidas numa imagem bidimensional que é aplicada a uma rede convolucional 2D para explorar assimetrias nas FRS bilaterais. Os resultados obtidos mostram que a rede com múltiplas camadas totalmente conetadas supera em 1% a rede convolucional. O classificador binário alcançou uma precisão em torno de 99,0%, enquanto a precisão do modelo multiclasse ´e de cerca de 97,2%. Os resultados preliminares obtidos com a rede convolucional 2-D baseada em imagens são inferiores, o que pode indicar que são necessários esforços adicionais para tirar proveito dessa abordagem.2022-05-23T09:34:49Z2021-11-25T00:00:00Z2021-11-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/33934engVentuzelos, João Pedro Diasinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:05:17Zoai:ria.ua.pt:10773/33934Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:17.028229Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Machine learning classification of human gait disorders
title Machine learning classification of human gait disorders
spellingShingle Machine learning classification of human gait disorders
Ventuzelos, João Pedro Dias
Human gait disorders
Ground reaction forces
Time series classification
Multilayer perceptron
Convolutional neural networks
title_short Machine learning classification of human gait disorders
title_full Machine learning classification of human gait disorders
title_fullStr Machine learning classification of human gait disorders
title_full_unstemmed Machine learning classification of human gait disorders
title_sort Machine learning classification of human gait disorders
author Ventuzelos, João Pedro Dias
author_facet Ventuzelos, João Pedro Dias
author_role author
dc.contributor.author.fl_str_mv Ventuzelos, João Pedro Dias
dc.subject.por.fl_str_mv Human gait disorders
Ground reaction forces
Time series classification
Multilayer perceptron
Convolutional neural networks
topic Human gait disorders
Ground reaction forces
Time series classification
Multilayer perceptron
Convolutional neural networks
description Computerized human gait analysis is commonly used by researchers and physicians to detect disorders, evaluate therapy progress, or improve athletic performance. Advances in instrument and measurement technology has allowed the quantification of human gait characteristics, such as kinematic and kinetic parameters, electromyographic activity and energy consumption. In particular, the quantification of ground reaction forces (GRFs) has proved to be an important tool in the healthcare context. However, the extraction of meaningful features and their interpretation from the amount of complex data is still a challenging task. Consequently, machine learning methods are becoming popular to deal with the high-dimensionality, temporal dependencies, strong variability, and non-linear relationships present in human gait data. This dissertation aims to study the application of machine learning techniques for the classification of human gait disorders, using the annotated GaitRec dataset. The dataset contains bi-lateral 3D-GRF data from healthy individuals, as well from patients with musculoskeletal impairments at the hip, knee, ankle and calcaneus. This work addresses the custom development of classification models capable of differentiating normal vs. abnormal gait patterns (binary problem), as well as classifying pathological gait disorders (multi-class problem). The focus is on the comparison between classical fully-connected models and 1D convolutional neural networks (CNNs), in terms of prediction accuracy. Additionally, pre-processed time series are converted into a two-dimensional input image, which is applied to a 2D-CNN to explore asymmetries in bilateral GRFs. The results obtained show that the fully-connected model outperforms in 1% the 1DCNN model. The binary classifier achieved a prediction accuracy around 99.0%, while the multi-class accuracy score is around 97.2%. The preliminary results achieved with the image-based 2-D CNN are much lower which may indicate that additional efforts will be needed to take advantage of this approach.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-25T00:00:00Z
2021-11-25
2022-05-23T09:34:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/33934
url http://hdl.handle.net/10773/33934
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137707817959424