A digital twin of charging stations for fleets of electric vehicles

Detalhes bibliográficos
Autor(a) principal: Francisco, André
Data de Publicação: 2023
Outros Autores: Monteiro, Jânio, Cardoso, Pedro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/20253
Resumo: The increasing concern over the environmental impact of fossil fuels and associated CO2 emissions created a growing interest on the use of electric vehicles (EVs) and green energy utilization. In this context, the widespread adoption of EVs should be accompanied by the introduction of generation from renewable energy sources (RES). That insertion, at the distribution level, presents challenges that result from their intermittent nature, requiring demand-response measures that can be addressed by adjusting the charging processes to match the available power. In the framework of EVs renting companies, it is essential to have an efficient charging management that allows achieving high levels of self-consumption and self-sufficiency, lower operational costs and lower payback periods for the investments made. The utilization of digital twins (DTs) can be key to achieve those goals, providing accurate simulations and predictions. Their use in the context of EV charging can offer valuable insights into optimizing charging scheduling and predicting energy demands, taking into consideration distinct scenarios. This paper presents the work done to implement DTs of a set of charging stations (CSs) and EVs, which allow the modeling and improved management of the charging processes of EV fleets, for a set of CSs, integrating RES. In this charging context, experimental results using the DT were applied considering a predicted mobility. The applied scenarios supported an effective and optimized managing performance, reaching low paybacks and high self-sufficiency values. The obtained results show that this method is a viable and cost-effective solution for companies renting EVs.
id RCAP_7ddc02dce6691f10c12425184f01be97
oai_identifier_str oai:sapientia.ualg.pt:10400.1/20253
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A digital twin of charging stations for fleets of electric vehiclesDigital twinElectric vehiclesFleetsSmart chargingRenewable energy sourcesThe increasing concern over the environmental impact of fossil fuels and associated CO2 emissions created a growing interest on the use of electric vehicles (EVs) and green energy utilization. In this context, the widespread adoption of EVs should be accompanied by the introduction of generation from renewable energy sources (RES). That insertion, at the distribution level, presents challenges that result from their intermittent nature, requiring demand-response measures that can be addressed by adjusting the charging processes to match the available power. In the framework of EVs renting companies, it is essential to have an efficient charging management that allows achieving high levels of self-consumption and self-sufficiency, lower operational costs and lower payback periods for the investments made. The utilization of digital twins (DTs) can be key to achieve those goals, providing accurate simulations and predictions. Their use in the context of EV charging can offer valuable insights into optimizing charging scheduling and predicting energy demands, taking into consideration distinct scenarios. This paper presents the work done to implement DTs of a set of charging stations (CSs) and EVs, which allow the modeling and improved management of the charging processes of EV fleets, for a set of CSs, integrating RES. In this charging context, experimental results using the DT were applied considering a predicted mobility. The applied scenarios supported an effective and optimized managing performance, reaching low paybacks and high self-sufficiency values. The obtained results show that this method is a viable and cost-effective solution for companies renting EVs.IEEE - Institute of Electrical and Electronics EngineersSapientiaFrancisco, AndréMonteiro, JânioCardoso, Pedro2024-01-03T11:04:31Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/20253eng2169-353610.1109/ACCESS.2023.3330833info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-10T02:00:51Zoai:sapientia.ualg.pt:10400.1/20253Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:31:10.801344Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A digital twin of charging stations for fleets of electric vehicles
title A digital twin of charging stations for fleets of electric vehicles
spellingShingle A digital twin of charging stations for fleets of electric vehicles
Francisco, André
Digital twin
Electric vehicles
Fleets
Smart charging
Renewable energy sources
title_short A digital twin of charging stations for fleets of electric vehicles
title_full A digital twin of charging stations for fleets of electric vehicles
title_fullStr A digital twin of charging stations for fleets of electric vehicles
title_full_unstemmed A digital twin of charging stations for fleets of electric vehicles
title_sort A digital twin of charging stations for fleets of electric vehicles
author Francisco, André
author_facet Francisco, André
Monteiro, Jânio
Cardoso, Pedro
author_role author
author2 Monteiro, Jânio
Cardoso, Pedro
author2_role author
author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Francisco, André
Monteiro, Jânio
Cardoso, Pedro
dc.subject.por.fl_str_mv Digital twin
Electric vehicles
Fleets
Smart charging
Renewable energy sources
topic Digital twin
Electric vehicles
Fleets
Smart charging
Renewable energy sources
description The increasing concern over the environmental impact of fossil fuels and associated CO2 emissions created a growing interest on the use of electric vehicles (EVs) and green energy utilization. In this context, the widespread adoption of EVs should be accompanied by the introduction of generation from renewable energy sources (RES). That insertion, at the distribution level, presents challenges that result from their intermittent nature, requiring demand-response measures that can be addressed by adjusting the charging processes to match the available power. In the framework of EVs renting companies, it is essential to have an efficient charging management that allows achieving high levels of self-consumption and self-sufficiency, lower operational costs and lower payback periods for the investments made. The utilization of digital twins (DTs) can be key to achieve those goals, providing accurate simulations and predictions. Their use in the context of EV charging can offer valuable insights into optimizing charging scheduling and predicting energy demands, taking into consideration distinct scenarios. This paper presents the work done to implement DTs of a set of charging stations (CSs) and EVs, which allow the modeling and improved management of the charging processes of EV fleets, for a set of CSs, integrating RES. In this charging context, experimental results using the DT were applied considering a predicted mobility. The applied scenarios supported an effective and optimized managing performance, reaching low paybacks and high self-sufficiency values. The obtained results show that this method is a viable and cost-effective solution for companies renting EVs.
publishDate 2023
dc.date.none.fl_str_mv 2023
2023-01-01T00:00:00Z
2024-01-03T11:04:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/20253
url http://hdl.handle.net/10400.1/20253
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2169-3536
10.1109/ACCESS.2023.3330833
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE - Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv IEEE - Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136793791037440