Microscopy techniques for dye distribution in DSCs nanocrystalline TiO2 films 

Detalhes bibliográficos
Autor(a) principal: Barreiros, M. Alexandra
Data de Publicação: 2015
Outros Autores: Sequeira, S., Alves, L. C., Corregidor, V., Guimarães, Fernanda, Mascarenhas, João, Brites, Maria João
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.9/2891
Resumo: Capture of sunlight has attracted an increasing interest in the scientific community and triggered the development of efficient and cheap photovoltaic devices. Amongst recent generation technologies for solar energy conversion, dye-sensitized solar cells (DSCs) show an optimal trade-off between high-conversion efficiency and low-cost manufacturing. For the last two decades, significant progress has been made and best energy conversion efficiency of the DSC at the laboratory scale has surpassed 12% [1]. A lot of work has focused on the enlargement of surface areas to enhance the amount of adsorbed dyes by reduction of nanoparticle sizes or utilization of novel structures. Nevertheless there remain some crucial details of DSC operation for which limited information is available, namely dye diffusion and adsorption, surface coverage and dye distribution throughout the nc-TiO2 film. Microprobe techniques can be powerful tools to evaluate the dye load, the dye distribution and dye depth profile in sensitized films. Electron Probe Microanalysis (EPMA) and Ion Beam Analytical (IBA) techniques using a micro-ion beam, namely micro-Particle Induced X-ray Emission ( PIXE) and Rutherford Backscattering Spectrometry (RBS), were used to quantify and to study the distribution of the ruthenium organometallic (N719) dye in TiO2 films, profiting from the different penetration depth and beam sizes of each technique. Two different types of films were prepared and sensitized, mesoporous nanoparticles and 1D nanostructured TiO2 films (figure 1). Despite the low concentration of Ru, the high sensitive analytical techniques used allowed to assess the Ru surface distribution and depth profile. Fig. 2 shows the PIXE maps of Ru and Ti indicating an homogeneous surface distribution. The same figure presents the RBS spectra obtained with a 2 MeV proton beam of the same sample showing that a good spectra fit is obtained considering only two sample layers: the first one with a 1.7 ìm thickness; the second one being the SiO2 substrate. The Ru RBS signal also shows that the dye has an homogeneous depth distribution. Due to the fine spatial resolution of the EPMA/WDS (Wavelength Dispersive Spectroscopy) technique it was possible to visualise the dye distribution in sample cross-section (with micrometer or submicrometer dimensions) as presented in Fig. 3 for the elemental mapping of a mesoporous nanoparticle TiO2 film. Dye load evaluation by two different techniques (ìPIXE and EPMA/WDS) provided similar results (Ru/Ti values around 0.5 %). The distribution analysis of the organometallic dye (N719) was done through ruthenium distribution via X-ray mapping. RBS was used to assess the ruthenium depth profile. This assessment can lead to a better understanding of the device performance.
id RCAP_7e2bf329ecd1ed144bd81d5ef5b2c24d
oai_identifier_str oai:repositorio.lneg.pt:10400.9/2891
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Microscopy techniques for dye distribution in DSCs nanocrystalline TiO2 films Titanium dioxideNanostructured materialsSolar energy conversionSolar cellsDyesCapture of sunlight has attracted an increasing interest in the scientific community and triggered the development of efficient and cheap photovoltaic devices. Amongst recent generation technologies for solar energy conversion, dye-sensitized solar cells (DSCs) show an optimal trade-off between high-conversion efficiency and low-cost manufacturing. For the last two decades, significant progress has been made and best energy conversion efficiency of the DSC at the laboratory scale has surpassed 12% [1]. A lot of work has focused on the enlargement of surface areas to enhance the amount of adsorbed dyes by reduction of nanoparticle sizes or utilization of novel structures. Nevertheless there remain some crucial details of DSC operation for which limited information is available, namely dye diffusion and adsorption, surface coverage and dye distribution throughout the nc-TiO2 film. Microprobe techniques can be powerful tools to evaluate the dye load, the dye distribution and dye depth profile in sensitized films. Electron Probe Microanalysis (EPMA) and Ion Beam Analytical (IBA) techniques using a micro-ion beam, namely micro-Particle Induced X-ray Emission ( PIXE) and Rutherford Backscattering Spectrometry (RBS), were used to quantify and to study the distribution of the ruthenium organometallic (N719) dye in TiO2 films, profiting from the different penetration depth and beam sizes of each technique. Two different types of films were prepared and sensitized, mesoporous nanoparticles and 1D nanostructured TiO2 films (figure 1). Despite the low concentration of Ru, the high sensitive analytical techniques used allowed to assess the Ru surface distribution and depth profile. Fig. 2 shows the PIXE maps of Ru and Ti indicating an homogeneous surface distribution. The same figure presents the RBS spectra obtained with a 2 MeV proton beam of the same sample showing that a good spectra fit is obtained considering only two sample layers: the first one with a 1.7 ìm thickness; the second one being the SiO2 substrate. The Ru RBS signal also shows that the dye has an homogeneous depth distribution. Due to the fine spatial resolution of the EPMA/WDS (Wavelength Dispersive Spectroscopy) technique it was possible to visualise the dye distribution in sample cross-section (with micrometer or submicrometer dimensions) as presented in Fig. 3 for the elemental mapping of a mesoporous nanoparticle TiO2 film. Dye load evaluation by two different techniques (ìPIXE and EPMA/WDS) provided similar results (Ru/Ti values around 0.5 %). The distribution analysis of the organometallic dye (N719) was done through ruthenium distribution via X-ray mapping. RBS was used to assess the ruthenium depth profile. This assessment can lead to a better understanding of the device performance.Cambridge University PressRepositório do LNEGBarreiros, M. AlexandraSequeira, S.Alves, L. C.Corregidor, V.Guimarães, FernandaMascarenhas, JoãoBrites, Maria João2016-03-17T17:11:24Z2015-01-01T00:00:00Z2015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.9/2891engBarreiros, M.A.; Sequeira, S.; Alves, L.C.; Corregidor, V.; Guimarães, F.; Mascarenhas, J.; Brites, M.J. - Microscopy techniques for dye distribution in DSCs nanocrystalline TiO2 films. In: Microscopy and Microanalysis, 2015, Vol. 21, Supplement S6, p. 88-891431-927610.1017/S1431927614014147info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-06T12:28:08Zoai:repositorio.lneg.pt:10400.9/2891Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:35:56.059278Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Microscopy techniques for dye distribution in DSCs nanocrystalline TiO2 films 
title Microscopy techniques for dye distribution in DSCs nanocrystalline TiO2 films 
spellingShingle Microscopy techniques for dye distribution in DSCs nanocrystalline TiO2 films 
Barreiros, M. Alexandra
Titanium dioxide
Nanostructured materials
Solar energy conversion
Solar cells
Dyes
title_short Microscopy techniques for dye distribution in DSCs nanocrystalline TiO2 films 
title_full Microscopy techniques for dye distribution in DSCs nanocrystalline TiO2 films 
title_fullStr Microscopy techniques for dye distribution in DSCs nanocrystalline TiO2 films 
title_full_unstemmed Microscopy techniques for dye distribution in DSCs nanocrystalline TiO2 films 
title_sort Microscopy techniques for dye distribution in DSCs nanocrystalline TiO2 films 
author Barreiros, M. Alexandra
author_facet Barreiros, M. Alexandra
Sequeira, S.
Alves, L. C.
Corregidor, V.
Guimarães, Fernanda
Mascarenhas, João
Brites, Maria João
author_role author
author2 Sequeira, S.
Alves, L. C.
Corregidor, V.
Guimarães, Fernanda
Mascarenhas, João
Brites, Maria João
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório do LNEG
dc.contributor.author.fl_str_mv Barreiros, M. Alexandra
Sequeira, S.
Alves, L. C.
Corregidor, V.
Guimarães, Fernanda
Mascarenhas, João
Brites, Maria João
dc.subject.por.fl_str_mv Titanium dioxide
Nanostructured materials
Solar energy conversion
Solar cells
Dyes
topic Titanium dioxide
Nanostructured materials
Solar energy conversion
Solar cells
Dyes
description Capture of sunlight has attracted an increasing interest in the scientific community and triggered the development of efficient and cheap photovoltaic devices. Amongst recent generation technologies for solar energy conversion, dye-sensitized solar cells (DSCs) show an optimal trade-off between high-conversion efficiency and low-cost manufacturing. For the last two decades, significant progress has been made and best energy conversion efficiency of the DSC at the laboratory scale has surpassed 12% [1]. A lot of work has focused on the enlargement of surface areas to enhance the amount of adsorbed dyes by reduction of nanoparticle sizes or utilization of novel structures. Nevertheless there remain some crucial details of DSC operation for which limited information is available, namely dye diffusion and adsorption, surface coverage and dye distribution throughout the nc-TiO2 film. Microprobe techniques can be powerful tools to evaluate the dye load, the dye distribution and dye depth profile in sensitized films. Electron Probe Microanalysis (EPMA) and Ion Beam Analytical (IBA) techniques using a micro-ion beam, namely micro-Particle Induced X-ray Emission ( PIXE) and Rutherford Backscattering Spectrometry (RBS), were used to quantify and to study the distribution of the ruthenium organometallic (N719) dye in TiO2 films, profiting from the different penetration depth and beam sizes of each technique. Two different types of films were prepared and sensitized, mesoporous nanoparticles and 1D nanostructured TiO2 films (figure 1). Despite the low concentration of Ru, the high sensitive analytical techniques used allowed to assess the Ru surface distribution and depth profile. Fig. 2 shows the PIXE maps of Ru and Ti indicating an homogeneous surface distribution. The same figure presents the RBS spectra obtained with a 2 MeV proton beam of the same sample showing that a good spectra fit is obtained considering only two sample layers: the first one with a 1.7 ìm thickness; the second one being the SiO2 substrate. The Ru RBS signal also shows that the dye has an homogeneous depth distribution. Due to the fine spatial resolution of the EPMA/WDS (Wavelength Dispersive Spectroscopy) technique it was possible to visualise the dye distribution in sample cross-section (with micrometer or submicrometer dimensions) as presented in Fig. 3 for the elemental mapping of a mesoporous nanoparticle TiO2 film. Dye load evaluation by two different techniques (ìPIXE and EPMA/WDS) provided similar results (Ru/Ti values around 0.5 %). The distribution analysis of the organometallic dye (N719) was done through ruthenium distribution via X-ray mapping. RBS was used to assess the ruthenium depth profile. This assessment can lead to a better understanding of the device performance.
publishDate 2015
dc.date.none.fl_str_mv 2015-01-01T00:00:00Z
2015-01-01T00:00:00Z
2016-03-17T17:11:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.9/2891
url http://hdl.handle.net/10400.9/2891
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Barreiros, M.A.; Sequeira, S.; Alves, L.C.; Corregidor, V.; Guimarães, F.; Mascarenhas, J.; Brites, M.J. - Microscopy techniques for dye distribution in DSCs nanocrystalline TiO2 films. In: Microscopy and Microanalysis, 2015, Vol. 21, Supplement S6, p. 88-89
1431-9276
10.1017/S1431927614014147
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130225191157760