Implementing machine learning in the stock picking process of Nova students portfolio
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/102627 |
Resumo: | In a time when algorithmic trading accounts for over 50% of US equities’ traded volume, this work project proposes a holistic approach to the implementation of Machine Learning in the Stock Picking process of the Nova Students Portfolio. The presented algorithms can help investors in the identification of the features that drive stock returns and results show that our predictive algorithm provides an edge in the selection of outperforming stocks. An investor using our method from 2006 to 2019 would have achieved an annualized return of 4.8% in excess of the S&P 500 and an Info Sharpe gain of 0.2. |
id |
RCAP_7e4e20caf27143fb4d951cc5154ba789 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/102627 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Implementing machine learning in the stock picking process of Nova students portfolioMachine learningStock pickingPortfolio managementDomínio/Área Científica::Ciências Sociais::Economia e GestãoIn a time when algorithmic trading accounts for over 50% of US equities’ traded volume, this work project proposes a holistic approach to the implementation of Machine Learning in the Stock Picking process of the Nova Students Portfolio. The presented algorithms can help investors in the identification of the features that drive stock returns and results show that our predictive algorithm provides an edge in the selection of outperforming stocks. An investor using our method from 2006 to 2019 would have achieved an annualized return of 4.8% in excess of the S&P 500 and an Info Sharpe gain of 0.2.Ribeiro, Gonçalo SommerRUNAfonso, Miguel Pardal2020-10-13T00:30:46Z2020-01-132020-08-202020-01-13T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/102627TID:202495396enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:48:22Zoai:run.unl.pt:10362/102627Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:39:45.115759Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Implementing machine learning in the stock picking process of Nova students portfolio |
title |
Implementing machine learning in the stock picking process of Nova students portfolio |
spellingShingle |
Implementing machine learning in the stock picking process of Nova students portfolio Afonso, Miguel Pardal Machine learning Stock picking Portfolio management Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Implementing machine learning in the stock picking process of Nova students portfolio |
title_full |
Implementing machine learning in the stock picking process of Nova students portfolio |
title_fullStr |
Implementing machine learning in the stock picking process of Nova students portfolio |
title_full_unstemmed |
Implementing machine learning in the stock picking process of Nova students portfolio |
title_sort |
Implementing machine learning in the stock picking process of Nova students portfolio |
author |
Afonso, Miguel Pardal |
author_facet |
Afonso, Miguel Pardal |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ribeiro, Gonçalo Sommer RUN |
dc.contributor.author.fl_str_mv |
Afonso, Miguel Pardal |
dc.subject.por.fl_str_mv |
Machine learning Stock picking Portfolio management Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Machine learning Stock picking Portfolio management Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
In a time when algorithmic trading accounts for over 50% of US equities’ traded volume, this work project proposes a holistic approach to the implementation of Machine Learning in the Stock Picking process of the Nova Students Portfolio. The presented algorithms can help investors in the identification of the features that drive stock returns and results show that our predictive algorithm provides an edge in the selection of outperforming stocks. An investor using our method from 2006 to 2019 would have achieved an annualized return of 4.8% in excess of the S&P 500 and an Info Sharpe gain of 0.2. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10-13T00:30:46Z 2020-01-13 2020-08-20 2020-01-13T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/102627 TID:202495396 |
url |
http://hdl.handle.net/10362/102627 |
identifier_str_mv |
TID:202495396 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138014351327232 |