Optimizing Energy Consumption of Household Appliances Using PSO and GWO
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/20668 |
Resumo: | Due to the increasing electricity consumption in the residential sector, new control systems emerged to control the demand side. Some techniques have been developed, such as shaping the curve’s load peaks by planning and shifting the electricity demand for household appliances. This paper presents a comparative analysis for the energy consumption optimization of two household appliances using two Swarm Intelligence (SI) algorithms: Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO). This problem’s main objective is to minimize the energy cost according to both machines’ energy consumption, respecting the restrictions applied. Three scenarios are presented: changing the energy market price during the day according to three types of energy tariffs. The results show that the user in the cheapest periods could switch on both machines because both techniques presented the highest energy consumption values. Regarding the objective function analysis, PSO and GWO obtained the best (more economical) values for the simple tariff due to its lower energy consumption. The GWO technique also presented more diverging values from the average objective function value than the PSO algorithm. |
id |
RCAP_7e53966a0e91f25e2120adfb70c3c7d3 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/20668 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Optimizing Energy Consumption of Household Appliances Using PSO and GWOEnergy consumptionGrey Wolf OptimizerOptimizationParticle Swarm OptimizationSwarm IntelligenceDue to the increasing electricity consumption in the residential sector, new control systems emerged to control the demand side. Some techniques have been developed, such as shaping the curve’s load peaks by planning and shifting the electricity demand for household appliances. This paper presents a comparative analysis for the energy consumption optimization of two household appliances using two Swarm Intelligence (SI) algorithms: Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO). This problem’s main objective is to minimize the energy cost according to both machines’ energy consumption, respecting the restrictions applied. Three scenarios are presented: changing the energy market price during the day according to three types of energy tariffs. The results show that the user in the cheapest periods could switch on both machines because both techniques presented the highest energy consumption values. Regarding the objective function analysis, PSO and GWO obtained the best (more economical) values for the simple tariff due to its lower energy consumption. The GWO technique also presented more diverging values from the average objective function value than the PSO algorithm.This work has received funding from FEDER Funds through COMPETE program and from National Funds through FCT under the project BENEFICE–PTDC/EEI-EEE/29070/2017 and UIDB/00760/2020 un- der CEECIND/02814/2017 grant.SpringerRepositório Científico do Instituto Politécnico do PortoTavares, InêsAlmeida, JoséSoares, JoãoRamos, SérgioVale, ZitaForoozandeh, Zahra2022-07-07T08:50:54Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdftext/plain; charset=utf-8http://hdl.handle.net/10400.22/20668porTavares, I., Almeida, J., Soares, J., Ramos, S., Vale, Z., Foroozandeh, Z. (2021). Optimizing Energy Consumption of Household Appliances Using PSO and GWO. In: Marreiros, G., Melo, F.S., Lau, N., Lopes Cardoso, H., Reis, L.P. (eds) Progress in Artificial Intelligence. EPIA 2021. Lecture Notes in Computer Science(), vol 12981. Springer, Cham. https://doi.org/10.1007/978-3-030-86230-5_11978-3-030-86230-510.1007/978-3-030-86230-5_11info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:16:12Zoai:recipp.ipp.pt:10400.22/20668Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:40:43.347497Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Optimizing Energy Consumption of Household Appliances Using PSO and GWO |
title |
Optimizing Energy Consumption of Household Appliances Using PSO and GWO |
spellingShingle |
Optimizing Energy Consumption of Household Appliances Using PSO and GWO Tavares, Inês Energy consumption Grey Wolf Optimizer Optimization Particle Swarm Optimization Swarm Intelligence |
title_short |
Optimizing Energy Consumption of Household Appliances Using PSO and GWO |
title_full |
Optimizing Energy Consumption of Household Appliances Using PSO and GWO |
title_fullStr |
Optimizing Energy Consumption of Household Appliances Using PSO and GWO |
title_full_unstemmed |
Optimizing Energy Consumption of Household Appliances Using PSO and GWO |
title_sort |
Optimizing Energy Consumption of Household Appliances Using PSO and GWO |
author |
Tavares, Inês |
author_facet |
Tavares, Inês Almeida, José Soares, João Ramos, Sérgio Vale, Zita Foroozandeh, Zahra |
author_role |
author |
author2 |
Almeida, José Soares, João Ramos, Sérgio Vale, Zita Foroozandeh, Zahra |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Tavares, Inês Almeida, José Soares, João Ramos, Sérgio Vale, Zita Foroozandeh, Zahra |
dc.subject.por.fl_str_mv |
Energy consumption Grey Wolf Optimizer Optimization Particle Swarm Optimization Swarm Intelligence |
topic |
Energy consumption Grey Wolf Optimizer Optimization Particle Swarm Optimization Swarm Intelligence |
description |
Due to the increasing electricity consumption in the residential sector, new control systems emerged to control the demand side. Some techniques have been developed, such as shaping the curve’s load peaks by planning and shifting the electricity demand for household appliances. This paper presents a comparative analysis for the energy consumption optimization of two household appliances using two Swarm Intelligence (SI) algorithms: Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO). This problem’s main objective is to minimize the energy cost according to both machines’ energy consumption, respecting the restrictions applied. Three scenarios are presented: changing the energy market price during the day according to three types of energy tariffs. The results show that the user in the cheapest periods could switch on both machines because both techniques presented the highest energy consumption values. Regarding the objective function analysis, PSO and GWO obtained the best (more economical) values for the simple tariff due to its lower energy consumption. The GWO technique also presented more diverging values from the average objective function value than the PSO algorithm. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z 2022-07-07T08:50:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/20668 |
url |
http://hdl.handle.net/10400.22/20668 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Tavares, I., Almeida, J., Soares, J., Ramos, S., Vale, Z., Foroozandeh, Z. (2021). Optimizing Energy Consumption of Household Appliances Using PSO and GWO. In: Marreiros, G., Melo, F.S., Lau, N., Lopes Cardoso, H., Reis, L.P. (eds) Progress in Artificial Intelligence. EPIA 2021. Lecture Notes in Computer Science(), vol 12981. Springer, Cham. https://doi.org/10.1007/978-3-030-86230-5_11 978-3-030-86230-5 10.1007/978-3-030-86230-5_11 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/plain; charset=utf-8 |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131495576633344 |