Revisiting the correspondence between cut-elimination and normalisation

Detalhes bibliográficos
Autor(a) principal: Espírito Santo, José
Data de Publicação: 2000
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/3868
Resumo: Cut-free proofs in Herbelin's sequent calculus are in 1-1 correspondence with normal natural deduction proofs. For this reason Herbelin's sequent calculus has been considered a privileged middle-point between L-systems and natural deduction. However, this bijection does not extend to proofs containing cuts and Herbelin observed that his cut-elimination procedure is not isomorphic to $\beta$-reduction. In this paper we equip Herbelin's system with rewrite rules which, at the same time: (1) complete in a sense the cut elimination procedure firstly proposed by Herbelin; and (2) perform the intuitionistic "fragment'' of the tq-protocol - a cut-elimination procedure for classical logic defined by Danos, Joinet and Schellinx. Moreover we identify the subcalculus of our system which is isomorphic to natural deduction, the isomorphism being with respect not only to proofs but also to normalisation. Our results show, for the implicational fragment of intuitionistic logic, how to embed natural deduction in the much wider world of sequent calculus and what a particular cut-elimination procedure normalisation is.
id RCAP_7ea3de93f3231cd148b4454f6fc324ab
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/3868
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Revisiting the correspondence between cut-elimination and normalisationCut-eliminationNormalisationHerbelin's sequent calculusCut-free proofs in Herbelin's sequent calculus are in 1-1 correspondence with normal natural deduction proofs. For this reason Herbelin's sequent calculus has been considered a privileged middle-point between L-systems and natural deduction. However, this bijection does not extend to proofs containing cuts and Herbelin observed that his cut-elimination procedure is not isomorphic to $\beta$-reduction. In this paper we equip Herbelin's system with rewrite rules which, at the same time: (1) complete in a sense the cut elimination procedure firstly proposed by Herbelin; and (2) perform the intuitionistic "fragment'' of the tq-protocol - a cut-elimination procedure for classical logic defined by Danos, Joinet and Schellinx. Moreover we identify the subcalculus of our system which is isomorphic to natural deduction, the isomorphism being with respect not only to proofs but also to normalisation. Our results show, for the implicational fragment of intuitionistic logic, how to embed natural deduction in the much wider world of sequent calculus and what a particular cut-elimination procedure normalisation is.Fundação para a Ciência e a Tecnologia (FCT).Springer VerlagUniversidade do MinhoEspírito Santo, José20002000-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/3868engMONTANARI, Ugo ; ROLIM, José D. P. ; WELZL, Emo, ed. – “Automata, languages and programming : 27th International Colloquium, ICALP 2000, Geneva, Switzerland, July 9-15, 2000 : proceedings”. Berlin [etc.] : Springer Verlag, cop. 2000. ISBN 3-540-67715-1. p. 600-611.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T06:22:48Zoai:repositorium.sdum.uminho.pt:1822/3868Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T06:22:48Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Revisiting the correspondence between cut-elimination and normalisation
title Revisiting the correspondence between cut-elimination and normalisation
spellingShingle Revisiting the correspondence between cut-elimination and normalisation
Espírito Santo, José
Cut-elimination
Normalisation
Herbelin's sequent calculus
title_short Revisiting the correspondence between cut-elimination and normalisation
title_full Revisiting the correspondence between cut-elimination and normalisation
title_fullStr Revisiting the correspondence between cut-elimination and normalisation
title_full_unstemmed Revisiting the correspondence between cut-elimination and normalisation
title_sort Revisiting the correspondence between cut-elimination and normalisation
author Espírito Santo, José
author_facet Espírito Santo, José
author_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Espírito Santo, José
dc.subject.por.fl_str_mv Cut-elimination
Normalisation
Herbelin's sequent calculus
topic Cut-elimination
Normalisation
Herbelin's sequent calculus
description Cut-free proofs in Herbelin's sequent calculus are in 1-1 correspondence with normal natural deduction proofs. For this reason Herbelin's sequent calculus has been considered a privileged middle-point between L-systems and natural deduction. However, this bijection does not extend to proofs containing cuts and Herbelin observed that his cut-elimination procedure is not isomorphic to $\beta$-reduction. In this paper we equip Herbelin's system with rewrite rules which, at the same time: (1) complete in a sense the cut elimination procedure firstly proposed by Herbelin; and (2) perform the intuitionistic "fragment'' of the tq-protocol - a cut-elimination procedure for classical logic defined by Danos, Joinet and Schellinx. Moreover we identify the subcalculus of our system which is isomorphic to natural deduction, the isomorphism being with respect not only to proofs but also to normalisation. Our results show, for the implicational fragment of intuitionistic logic, how to embed natural deduction in the much wider world of sequent calculus and what a particular cut-elimination procedure normalisation is.
publishDate 2000
dc.date.none.fl_str_mv 2000
2000-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/3868
url http://hdl.handle.net/1822/3868
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv MONTANARI, Ugo ; ROLIM, José D. P. ; WELZL, Emo, ed. – “Automata, languages and programming : 27th International Colloquium, ICALP 2000, Geneva, Switzerland, July 9-15, 2000 : proceedings”. Berlin [etc.] : Springer Verlag, cop. 2000. ISBN 3-540-67715-1. p. 600-611.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817544952861687808