Revisiting the correspondence between cut-elimination and normalisation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/3868 |
Resumo: | Cut-free proofs in Herbelin's sequent calculus are in 1-1 correspondence with normal natural deduction proofs. For this reason Herbelin's sequent calculus has been considered a privileged middle-point between L-systems and natural deduction. However, this bijection does not extend to proofs containing cuts and Herbelin observed that his cut-elimination procedure is not isomorphic to $\beta$-reduction. In this paper we equip Herbelin's system with rewrite rules which, at the same time: (1) complete in a sense the cut elimination procedure firstly proposed by Herbelin; and (2) perform the intuitionistic "fragment'' of the tq-protocol - a cut-elimination procedure for classical logic defined by Danos, Joinet and Schellinx. Moreover we identify the subcalculus of our system which is isomorphic to natural deduction, the isomorphism being with respect not only to proofs but also to normalisation. Our results show, for the implicational fragment of intuitionistic logic, how to embed natural deduction in the much wider world of sequent calculus and what a particular cut-elimination procedure normalisation is. |
id |
RCAP_7ea3de93f3231cd148b4454f6fc324ab |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/3868 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Revisiting the correspondence between cut-elimination and normalisationCut-eliminationNormalisationHerbelin's sequent calculusCut-free proofs in Herbelin's sequent calculus are in 1-1 correspondence with normal natural deduction proofs. For this reason Herbelin's sequent calculus has been considered a privileged middle-point between L-systems and natural deduction. However, this bijection does not extend to proofs containing cuts and Herbelin observed that his cut-elimination procedure is not isomorphic to $\beta$-reduction. In this paper we equip Herbelin's system with rewrite rules which, at the same time: (1) complete in a sense the cut elimination procedure firstly proposed by Herbelin; and (2) perform the intuitionistic "fragment'' of the tq-protocol - a cut-elimination procedure for classical logic defined by Danos, Joinet and Schellinx. Moreover we identify the subcalculus of our system which is isomorphic to natural deduction, the isomorphism being with respect not only to proofs but also to normalisation. Our results show, for the implicational fragment of intuitionistic logic, how to embed natural deduction in the much wider world of sequent calculus and what a particular cut-elimination procedure normalisation is.Fundação para a Ciência e a Tecnologia (FCT).Springer VerlagUniversidade do MinhoEspírito Santo, José20002000-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/3868engMONTANARI, Ugo ; ROLIM, José D. P. ; WELZL, Emo, ed. – “Automata, languages and programming : 27th International Colloquium, ICALP 2000, Geneva, Switzerland, July 9-15, 2000 : proceedings”. Berlin [etc.] : Springer Verlag, cop. 2000. ISBN 3-540-67715-1. p. 600-611.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T06:22:48Zoai:repositorium.sdum.uminho.pt:1822/3868Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T06:22:48Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Revisiting the correspondence between cut-elimination and normalisation |
title |
Revisiting the correspondence between cut-elimination and normalisation |
spellingShingle |
Revisiting the correspondence between cut-elimination and normalisation Espírito Santo, José Cut-elimination Normalisation Herbelin's sequent calculus |
title_short |
Revisiting the correspondence between cut-elimination and normalisation |
title_full |
Revisiting the correspondence between cut-elimination and normalisation |
title_fullStr |
Revisiting the correspondence between cut-elimination and normalisation |
title_full_unstemmed |
Revisiting the correspondence between cut-elimination and normalisation |
title_sort |
Revisiting the correspondence between cut-elimination and normalisation |
author |
Espírito Santo, José |
author_facet |
Espírito Santo, José |
author_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Espírito Santo, José |
dc.subject.por.fl_str_mv |
Cut-elimination Normalisation Herbelin's sequent calculus |
topic |
Cut-elimination Normalisation Herbelin's sequent calculus |
description |
Cut-free proofs in Herbelin's sequent calculus are in 1-1 correspondence with normal natural deduction proofs. For this reason Herbelin's sequent calculus has been considered a privileged middle-point between L-systems and natural deduction. However, this bijection does not extend to proofs containing cuts and Herbelin observed that his cut-elimination procedure is not isomorphic to $\beta$-reduction. In this paper we equip Herbelin's system with rewrite rules which, at the same time: (1) complete in a sense the cut elimination procedure firstly proposed by Herbelin; and (2) perform the intuitionistic "fragment'' of the tq-protocol - a cut-elimination procedure for classical logic defined by Danos, Joinet and Schellinx. Moreover we identify the subcalculus of our system which is isomorphic to natural deduction, the isomorphism being with respect not only to proofs but also to normalisation. Our results show, for the implicational fragment of intuitionistic logic, how to embed natural deduction in the much wider world of sequent calculus and what a particular cut-elimination procedure normalisation is. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000 2000-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/3868 |
url |
http://hdl.handle.net/1822/3868 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
MONTANARI, Ugo ; ROLIM, José D. P. ; WELZL, Emo, ed. – “Automata, languages and programming : 27th International Colloquium, ICALP 2000, Geneva, Switzerland, July 9-15, 2000 : proceedings”. Berlin [etc.] : Springer Verlag, cop. 2000. ISBN 3-540-67715-1. p. 600-611. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544952861687808 |