3D terrain generation using neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/22222 |
Resumo: | With the increase in computation power, coupled with the advancements in the field in the form of GANs and cGANs, Neural Networks have become an attractive proposition for content generation. This opened opportunities for Procedural Content Generation algorithms (PCG) to tap Neural Networks generative power to create tools that allow developers to remove part of creative and developmental burden imposed throughout the gaming industry, be it from investors looking for a return on their investment and from consumers that want more and better content, fast. This dissertation sets out to develop a PCG mixed-initiative tool, leveraging cGANs, to create authored 3D terrains, allowing users to directly influence the resulting generated content without the need for formal training on terrain generation or complex interactions with the tool to influence the generative output, as opposed to state of the art generative algorithms that only allow for random content generation or are needlessly complex. Testing done to 113 people online, as well as in-person testing done to 30 people, revealed that it is indeed possible to develop a tool that allows users from any level of terrain creation knowledge, and minimal tool training, to easily create a 3D terrain that is more realistic looking than those generated by state-of-the-art solutions such as Perlin Noise. |
id |
RCAP_7fbc463a592658ecb124fde88df3870d |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/22222 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
3D terrain generation using neural networksNeural networksProcedural content generationPCGGANcGAN3D terrainPerlin noiseRedes neuronaisGeração procedimental de conteúdosTerrenos 3DWith the increase in computation power, coupled with the advancements in the field in the form of GANs and cGANs, Neural Networks have become an attractive proposition for content generation. This opened opportunities for Procedural Content Generation algorithms (PCG) to tap Neural Networks generative power to create tools that allow developers to remove part of creative and developmental burden imposed throughout the gaming industry, be it from investors looking for a return on their investment and from consumers that want more and better content, fast. This dissertation sets out to develop a PCG mixed-initiative tool, leveraging cGANs, to create authored 3D terrains, allowing users to directly influence the resulting generated content without the need for formal training on terrain generation or complex interactions with the tool to influence the generative output, as opposed to state of the art generative algorithms that only allow for random content generation or are needlessly complex. Testing done to 113 people online, as well as in-person testing done to 30 people, revealed that it is indeed possible to develop a tool that allows users from any level of terrain creation knowledge, and minimal tool training, to easily create a 3D terrain that is more realistic looking than those generated by state-of-the-art solutions such as Perlin Noise.Com o aumento do poder de computação, juntamente com os avanços neste campo na forma de GANs e cGANs, as Redes Neurais tornaram-se numa proposta atrativa para a geração de conteúdos. Graças a estes avanços, abriram-se oportunidades para os algoritmos de Geração de Conteúdos Procedimentais(PCG) explorarem o poder generativo das Redes Neurais para a criação de ferramentas que permitam aos programadores remover parte da carga criativa e de desenvolvimento imposta em toda a indústria dos jogos, seja por parte dos investidores que procuram um retorno do seu investimento ou por parte dos consumidores que querem mais e melhor conteúdo, o mais rápido possível. Esta dissertação pretende desenvolver uma ferramenta de iniciativa mista PCG, alavancando cGANs, para criar terrenos 3D cocriados, permitindo aos utilizadores influenciarem diretamente o conteúdo gerado sem necessidade de terem formação formal sobre a criação de terrenos 3D ou interações complexas com a ferramenta para influenciar a produção generativa, opondo-se assim a algoritmos generativos comummente utilizados, que apenas permitem a geração de conteúdo aleatório ou que são desnecessariamente complexos. Um conjunto de testes feitos a 113 pessoas online e a 30 pessoas presencialmente, revelaram que é de facto possível desenvolver uma ferramenta que permita aos utilizadores, de qualquer nível de conhecimento sobre criação de terrenos, e com uma formação mínima na ferramenta, criar um terreno 3D mais realista do que os terrenos gerados a partir da solução de estado da arte, como o Perlin Noise, e de uma forma fácil.2021-02-25T19:48:52Z2020-12-09T00:00:00Z2020-12-092020-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/22222TID:202647633engAlmeida, Rodrigo de Matos Pires Tavares deinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:49:12Zoai:repositorio.iscte-iul.pt:10071/22222Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:24:08.293862Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
3D terrain generation using neural networks |
title |
3D terrain generation using neural networks |
spellingShingle |
3D terrain generation using neural networks Almeida, Rodrigo de Matos Pires Tavares de Neural networks Procedural content generation PCG GAN cGAN 3D terrain Perlin noise Redes neuronais Geração procedimental de conteúdos Terrenos 3D |
title_short |
3D terrain generation using neural networks |
title_full |
3D terrain generation using neural networks |
title_fullStr |
3D terrain generation using neural networks |
title_full_unstemmed |
3D terrain generation using neural networks |
title_sort |
3D terrain generation using neural networks |
author |
Almeida, Rodrigo de Matos Pires Tavares de |
author_facet |
Almeida, Rodrigo de Matos Pires Tavares de |
author_role |
author |
dc.contributor.author.fl_str_mv |
Almeida, Rodrigo de Matos Pires Tavares de |
dc.subject.por.fl_str_mv |
Neural networks Procedural content generation PCG GAN cGAN 3D terrain Perlin noise Redes neuronais Geração procedimental de conteúdos Terrenos 3D |
topic |
Neural networks Procedural content generation PCG GAN cGAN 3D terrain Perlin noise Redes neuronais Geração procedimental de conteúdos Terrenos 3D |
description |
With the increase in computation power, coupled with the advancements in the field in the form of GANs and cGANs, Neural Networks have become an attractive proposition for content generation. This opened opportunities for Procedural Content Generation algorithms (PCG) to tap Neural Networks generative power to create tools that allow developers to remove part of creative and developmental burden imposed throughout the gaming industry, be it from investors looking for a return on their investment and from consumers that want more and better content, fast. This dissertation sets out to develop a PCG mixed-initiative tool, leveraging cGANs, to create authored 3D terrains, allowing users to directly influence the resulting generated content without the need for formal training on terrain generation or complex interactions with the tool to influence the generative output, as opposed to state of the art generative algorithms that only allow for random content generation or are needlessly complex. Testing done to 113 people online, as well as in-person testing done to 30 people, revealed that it is indeed possible to develop a tool that allows users from any level of terrain creation knowledge, and minimal tool training, to easily create a 3D terrain that is more realistic looking than those generated by state-of-the-art solutions such as Perlin Noise. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-09T00:00:00Z 2020-12-09 2020-10 2021-02-25T19:48:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/22222 TID:202647633 |
url |
http://hdl.handle.net/10071/22222 |
identifier_str_mv |
TID:202647633 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134803381977088 |