Development of GNSS/IMU UAV-borne scalar gravimetry system

Detalhes bibliográficos
Autor(a) principal: Ostapchuk, Dmytro
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/41076
Resumo: Airborne gravimetry is the determination of the Earth’s gravity field, using aircraft as a mobile measurement platform. Nowadays, airborne measurements cover an important intermediate area between terrestrial and satellite gravity methods in terms of both resolution and coverage. However, the aircraft rental cost is high, and strict rules and regulations exist for acquiring permission to conduct a flight mission in most countries. A possible alternative investigated in this thesis is based on the use of an Unmanned Aerial Vehicle (UAV). Its advantages include high manoeuvrability, operational flexibility and no airport support. The development of a compact size low-cost strapdown scalar gravimetry system for hexacopter UAV is attempted and its performance is evaluated. This gravimetry system is based on a combination of one Global Navigation Satellite System (GNSS) receiver and a (strapdown) Inertial Measurement Unit (IMU) that are the two components of tactical-grade INS Quanta. IMU observations are integrated with respect to time and the gravity disturbance is obtained from the comparison of IMU-predicted position and velocity with GNSSobserved position and velocity, i.e. inertial navigation approach was adopted. Raw GNSS observations are processed into velocity and position estimates using Qinertia® software. All observations, IMU and GNSS data, are processed within a single loosely coupled Extended Kalman Filter (EKF) that includes the system state for gravity. For the implementation of the filter, the random constant process was adopted to model the errors in the gyros and accelerometers. Whereas, the gravity disturbance was modelled as a simple random walk process. In this way, the total state vector was composed of the position (3 states), the velocity (3 states), the attitude (3 states), the accelerometer and gyro biases (6 states), and one state for the gravity disturbance. In the scope of this thesis the UAV-borne gravimetry processing tool called gravito was developed. Evaluation of the system was primarily based on collecting the statistics of innovation sequences and comparing EKF’s estimates of position, velocity and attitude with those obtained by a commercial software Qinertia®. Based on the real campaign data, it was concluded that the internal gyroscope noise of IMU Quanta does not allow the estimation of the heading, as well as the roll and pitch angles, with sufficient accuracy for scalar gravimetry. Also increased dynamics of UAV (in comparison with manned aircraft) add additional errors to the gravity disturbance estimation by making invalid assumptions of linearity for the dynamic model of the system and through the scale factor errors of IMU. In this way, the current low-cost system with the processing method implemented is not suitable for scalar gravimetry mainly due to the noise in the IMU Quanta gyroscopes measurements.
id RCAP_8080ebda50f4903eae4ba40561536384
oai_identifier_str oai:ria.ua.pt:10773/41076
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Development of GNSS/IMU UAV-borne scalar gravimetry systemUAV-borne gravimetryStrapdown IMUGNSSKalman filterAirborne gravimetry is the determination of the Earth’s gravity field, using aircraft as a mobile measurement platform. Nowadays, airborne measurements cover an important intermediate area between terrestrial and satellite gravity methods in terms of both resolution and coverage. However, the aircraft rental cost is high, and strict rules and regulations exist for acquiring permission to conduct a flight mission in most countries. A possible alternative investigated in this thesis is based on the use of an Unmanned Aerial Vehicle (UAV). Its advantages include high manoeuvrability, operational flexibility and no airport support. The development of a compact size low-cost strapdown scalar gravimetry system for hexacopter UAV is attempted and its performance is evaluated. This gravimetry system is based on a combination of one Global Navigation Satellite System (GNSS) receiver and a (strapdown) Inertial Measurement Unit (IMU) that are the two components of tactical-grade INS Quanta. IMU observations are integrated with respect to time and the gravity disturbance is obtained from the comparison of IMU-predicted position and velocity with GNSSobserved position and velocity, i.e. inertial navigation approach was adopted. Raw GNSS observations are processed into velocity and position estimates using Qinertia® software. All observations, IMU and GNSS data, are processed within a single loosely coupled Extended Kalman Filter (EKF) that includes the system state for gravity. For the implementation of the filter, the random constant process was adopted to model the errors in the gyros and accelerometers. Whereas, the gravity disturbance was modelled as a simple random walk process. In this way, the total state vector was composed of the position (3 states), the velocity (3 states), the attitude (3 states), the accelerometer and gyro biases (6 states), and one state for the gravity disturbance. In the scope of this thesis the UAV-borne gravimetry processing tool called gravito was developed. Evaluation of the system was primarily based on collecting the statistics of innovation sequences and comparing EKF’s estimates of position, velocity and attitude with those obtained by a commercial software Qinertia®. Based on the real campaign data, it was concluded that the internal gyroscope noise of IMU Quanta does not allow the estimation of the heading, as well as the roll and pitch angles, with sufficient accuracy for scalar gravimetry. Also increased dynamics of UAV (in comparison with manned aircraft) add additional errors to the gravity disturbance estimation by making invalid assumptions of linearity for the dynamic model of the system and through the scale factor errors of IMU. In this way, the current low-cost system with the processing method implemented is not suitable for scalar gravimetry mainly due to the noise in the IMU Quanta gyroscopes measurements.A gravimetria aérea é a determinação do campo de gravidade da Terra, usando aeronave como a plataforma móvel de medição. Atualmente, as medições aéreas cobrem uma importante área intermediária entre os métodos de gravimetria terrestre e por satélite em termos de resolução e cobertura. No entanto, o custo do aluguer da aeronave é alto e as regras e regulamentos para adquirir permissão de efetuar missão na maioria dos países são exigentes. Uma possível alternativa investigada nesta tese baseia-se na utilização de um Veículo Aéreo Não Tripulado (UAV). As suas vantagens incluem alta manobrabilidade, flexibilidade operacional e o facto do UAV não precisar de suporte aeroportuário. Foi desenvolvido um sistema de gravimetria escalar de tamanho compacto e baixo custo para UAV hexacóptero e o seu desempenho foi avaliado. O sistema de gravimetria é baseado na combinação de um receptor do Sistema de Navegação Global por Satélite (GNSS) e uma Unidade de Medição Inercial (IMU) do tipo strapdown, estes são os dois componentes do Sistema de Navegação Inercial (INS) Quanta de grau tático. As observações do IMU são integradas em relação ao tempo e a perturbação da gravidade é obtida a partir da comparação da posição e velocidade previstas pelo IMU com a posição e velocidade observadas pelo GNSS, ou seja, a abordagem de navegação inercial foi adotada. As observações GNSS brutas são processadas em estimativas de velocidade e posição usando o software Qinertia®. Todas as observações, IMU e GNSS, são processados dentro de um único Filtro de Kalman Estendido (EKF) fracamente acoplado que inclui o estado do sistema para a gravidade. Na implementação do filtro para modelar os erros nos giroscópios e acelerómetros foi adotado o processo de constante aleatória. Enquanto que a perturbação da gravidade foi modelada como o processo de passeio aleatório. Desta forma, o vetor de estado total é composto por posição (3 estados), velocidade (3 estados), atitude (3 estados), viéses do acelerómetro e do giroscópio (6 estados) e um estado para a perturbação da gravidade. No âmbito desta tese foi desenvolvida a ferramenta chamada gravito que processa os dados recolhidos por UAV. A avaliação do sistema baseou-se principalmente na análise estatística das sequências de inovação e na comparação das estimativas de posição, velocidade e atitude do EKF com as obtidas por um software comercial Qinertia®. Com base nos dados reais da campanha gravimétrica, concluiu-se que o ruído interno dos giroscópios do IMU Quanta não permite estimar o ângulo de guinada, bem como os ângulos de rolamento e picada, com precisão suficiente para a gravimetria escalar. Além disso, a dinâmica altamente instável do UAV (em comparação com aeronave tripulada) invalida a hipótese do comportamento linear do modelo dinâmico do sistema e torna consideráveis os erros do fator de escala do IMU o que acrescenta os erros à estimativa da perturbação da gravidade. Desta forma, o atual sistema de baixo custo com o método de processamento implementado não é adequado para gravimetria escalar principalmente devido ao ruído nas medições dos giroscópios IMU Quanta.2024-03-14T09:41:49Z2023-07-05T00:00:00Z2023-07-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/41076engOstapchuk, Dmytroinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-18T01:48:45Zoai:ria.ua.pt:10773/41076Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T04:02:10.202807Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Development of GNSS/IMU UAV-borne scalar gravimetry system
title Development of GNSS/IMU UAV-borne scalar gravimetry system
spellingShingle Development of GNSS/IMU UAV-borne scalar gravimetry system
Ostapchuk, Dmytro
UAV-borne gravimetry
Strapdown IMU
GNSS
Kalman filter
title_short Development of GNSS/IMU UAV-borne scalar gravimetry system
title_full Development of GNSS/IMU UAV-borne scalar gravimetry system
title_fullStr Development of GNSS/IMU UAV-borne scalar gravimetry system
title_full_unstemmed Development of GNSS/IMU UAV-borne scalar gravimetry system
title_sort Development of GNSS/IMU UAV-borne scalar gravimetry system
author Ostapchuk, Dmytro
author_facet Ostapchuk, Dmytro
author_role author
dc.contributor.author.fl_str_mv Ostapchuk, Dmytro
dc.subject.por.fl_str_mv UAV-borne gravimetry
Strapdown IMU
GNSS
Kalman filter
topic UAV-borne gravimetry
Strapdown IMU
GNSS
Kalman filter
description Airborne gravimetry is the determination of the Earth’s gravity field, using aircraft as a mobile measurement platform. Nowadays, airborne measurements cover an important intermediate area between terrestrial and satellite gravity methods in terms of both resolution and coverage. However, the aircraft rental cost is high, and strict rules and regulations exist for acquiring permission to conduct a flight mission in most countries. A possible alternative investigated in this thesis is based on the use of an Unmanned Aerial Vehicle (UAV). Its advantages include high manoeuvrability, operational flexibility and no airport support. The development of a compact size low-cost strapdown scalar gravimetry system for hexacopter UAV is attempted and its performance is evaluated. This gravimetry system is based on a combination of one Global Navigation Satellite System (GNSS) receiver and a (strapdown) Inertial Measurement Unit (IMU) that are the two components of tactical-grade INS Quanta. IMU observations are integrated with respect to time and the gravity disturbance is obtained from the comparison of IMU-predicted position and velocity with GNSSobserved position and velocity, i.e. inertial navigation approach was adopted. Raw GNSS observations are processed into velocity and position estimates using Qinertia® software. All observations, IMU and GNSS data, are processed within a single loosely coupled Extended Kalman Filter (EKF) that includes the system state for gravity. For the implementation of the filter, the random constant process was adopted to model the errors in the gyros and accelerometers. Whereas, the gravity disturbance was modelled as a simple random walk process. In this way, the total state vector was composed of the position (3 states), the velocity (3 states), the attitude (3 states), the accelerometer and gyro biases (6 states), and one state for the gravity disturbance. In the scope of this thesis the UAV-borne gravimetry processing tool called gravito was developed. Evaluation of the system was primarily based on collecting the statistics of innovation sequences and comparing EKF’s estimates of position, velocity and attitude with those obtained by a commercial software Qinertia®. Based on the real campaign data, it was concluded that the internal gyroscope noise of IMU Quanta does not allow the estimation of the heading, as well as the roll and pitch angles, with sufficient accuracy for scalar gravimetry. Also increased dynamics of UAV (in comparison with manned aircraft) add additional errors to the gravity disturbance estimation by making invalid assumptions of linearity for the dynamic model of the system and through the scale factor errors of IMU. In this way, the current low-cost system with the processing method implemented is not suitable for scalar gravimetry mainly due to the noise in the IMU Quanta gyroscopes measurements.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-05T00:00:00Z
2023-07-05
2024-03-14T09:41:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/41076
url http://hdl.handle.net/10773/41076
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138193957715968