Improving word embeddings in Portuguese: increasing accuracy while reducing the size of the corpus
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/21674 |
Resumo: | The subjectiveness of multimedia content description has a strong negative impact on tag-based information retrieval. In our work, we propose enhancing available descriptions by adding semantically related tags. To cope with this objective, we use a word embedding technique based on the Word2Vec neural network parameterized and trained using a new dataset built from online newspapers. A large number of news stories was scraped and pre-processed to build a new dataset. Our target language is Portuguese, one of the most spoken languages worldwide. The results achieved significantly outperform similar existing solutions developed in the scope of different languages, including Portuguese. Contributions include also an online application and API available for external use. Although the presented work has been designed to enhance multimedia content annotation, it can be used in several other application areas. |
id |
RCAP_80dc382a34c04412dcdce934302a4326 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/21674 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Improving word embeddings in Portuguese: increasing accuracy while reducing the size of the corpusNatural language processingMachine learningMultimedia systemsContext awarenessWord2VecThe subjectiveness of multimedia content description has a strong negative impact on tag-based information retrieval. In our work, we propose enhancing available descriptions by adding semantically related tags. To cope with this objective, we use a word embedding technique based on the Word2Vec neural network parameterized and trained using a new dataset built from online newspapers. A large number of news stories was scraped and pre-processed to build a new dataset. Our target language is Portuguese, one of the most spoken languages worldwide. The results achieved significantly outperform similar existing solutions developed in the scope of different languages, including Portuguese. Contributions include also an online application and API available for external use. Although the presented work has been designed to enhance multimedia content annotation, it can be used in several other application areas.This work is financed by National Funds through the Portuguese funding agency, FCT - Fundacão para a Ciência e a Tecnologia, within project LA/P/0063/2020. The funders had ¸ no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.PeerJRepositório Científico do Instituto Politécnico do PortoPinto, José PedroViana, PaulaTeixeira, InêsAndrade, Maria2023-01-19T12:03:19Z2022-07-182022-07-18T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/21674eng10.7717/peerj-cs.964info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:17:55Zoai:recipp.ipp.pt:10400.22/21674Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:41:42.691735Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Improving word embeddings in Portuguese: increasing accuracy while reducing the size of the corpus |
title |
Improving word embeddings in Portuguese: increasing accuracy while reducing the size of the corpus |
spellingShingle |
Improving word embeddings in Portuguese: increasing accuracy while reducing the size of the corpus Pinto, José Pedro Natural language processing Machine learning Multimedia systems Context awareness Word2Vec |
title_short |
Improving word embeddings in Portuguese: increasing accuracy while reducing the size of the corpus |
title_full |
Improving word embeddings in Portuguese: increasing accuracy while reducing the size of the corpus |
title_fullStr |
Improving word embeddings in Portuguese: increasing accuracy while reducing the size of the corpus |
title_full_unstemmed |
Improving word embeddings in Portuguese: increasing accuracy while reducing the size of the corpus |
title_sort |
Improving word embeddings in Portuguese: increasing accuracy while reducing the size of the corpus |
author |
Pinto, José Pedro |
author_facet |
Pinto, José Pedro Viana, Paula Teixeira, Inês Andrade, Maria |
author_role |
author |
author2 |
Viana, Paula Teixeira, Inês Andrade, Maria |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Pinto, José Pedro Viana, Paula Teixeira, Inês Andrade, Maria |
dc.subject.por.fl_str_mv |
Natural language processing Machine learning Multimedia systems Context awareness Word2Vec |
topic |
Natural language processing Machine learning Multimedia systems Context awareness Word2Vec |
description |
The subjectiveness of multimedia content description has a strong negative impact on tag-based information retrieval. In our work, we propose enhancing available descriptions by adding semantically related tags. To cope with this objective, we use a word embedding technique based on the Word2Vec neural network parameterized and trained using a new dataset built from online newspapers. A large number of news stories was scraped and pre-processed to build a new dataset. Our target language is Portuguese, one of the most spoken languages worldwide. The results achieved significantly outperform similar existing solutions developed in the scope of different languages, including Portuguese. Contributions include also an online application and API available for external use. Although the presented work has been designed to enhance multimedia content annotation, it can be used in several other application areas. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-18 2022-07-18T00:00:00Z 2023-01-19T12:03:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/21674 |
url |
http://hdl.handle.net/10400.22/21674 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.7717/peerj-cs.964 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
PeerJ |
publisher.none.fl_str_mv |
PeerJ |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131504540909568 |