Theory and Practice in Recommender Systems

Detalhes bibliográficos
Autor(a) principal: Azambuja, Rogério Xavier de
Data de Publicação: 2021
Outros Autores: Morais, A. Jorge, Filipe, Vítor
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://doi.org/10.34627/rcc.v15i0.264
Resumo: In recent decades, artificial intelligence use has been frequent in the computational applications development. More recently, machine learning, especially through the use of deep learning, has driven growth and expanded the intelligent systems development for different domains. In the current scenario of technological growth, the recommender systems appear with increasing frequency through their different techniques for information filtering in large datasets. It is a challenge to provide adaptive recommendation to mitigate information overload in online environments. This article reviews previous works and addresses some of the theoretical-conceptual and theoretical-practical aspects that constitute the recommender systems, characterizing the use of deep neural network (DNN) to provide sequential recommendation supported by session-based recommendation.
id RCAP_815584e03f2e1fd0edb48fb2960e6a41
oai_identifier_str oai:ojs2.journals.uab.pt:article/264
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Theory and Practice in Recommender SystemsTeoria e Prática em Sistemas de RecomendaçãoIn recent decades, artificial intelligence use has been frequent in the computational applications development. More recently, machine learning, especially through the use of deep learning, has driven growth and expanded the intelligent systems development for different domains. In the current scenario of technological growth, the recommender systems appear with increasing frequency through their different techniques for information filtering in large datasets. It is a challenge to provide adaptive recommendation to mitigate information overload in online environments. This article reviews previous works and addresses some of the theoretical-conceptual and theoretical-practical aspects that constitute the recommender systems, characterizing the use of deep neural network (DNN) to provide sequential recommendation supported by session-based recommendation.Nas últimas décadas a utilização da inteligência artificial tem sido frequente no desenvolvimento de aplicações computacionais. Mais recentemente a aprendizagem automática, especialmente pelo uso da aprendizagem profunda (deep learning), tem impulsionado o crescimento e ampliado o desenvolvimento de sistemas inteligentes para diferentes domínios. No cenário atual de crescimento tecnológico estão a surgir com maior frequência os sistemas de recomendação (recommender systems) com diferentes técnicas para a filtragem de informações em grandes bases de dados. Um desafio é prover a recomendação adaptativa para mitigar a sobrecarga de informações em ambientes on-line. Este artigo revisa trabalhos anteriores e aborda alguns dos aspectos teórico-conceptuais e teórico-práticos que constituem os sistemas de recomendação, caracterizando o emprego de redes neuronais profundas (Deep Neural Network – DNN) para prover a recomendação sequencial apoiada pela recomendação baseada em sessão.Universidade Aberta2021-12-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.34627/rcc.v15i0.264https://doi.org/10.34627/rcc.v15i0.264Revista de Ciências da Computação; v. 16 (2021); 23-462182-18011646-633010.34627/rcc.v16i0reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPporhttps://journals.uab.pt/index.php/rcc/article/view/264https://journals.uab.pt/index.php/rcc/article/view/264/219Direitos de Autor (c) 2021 Universidade Abertahttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAzambuja, Rogério Xavier deMorais, A. JorgeFilipe, Vítor2022-12-23T06:30:14Zoai:ojs2.journals.uab.pt:article/264Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:14:02.383682Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Theory and Practice in Recommender Systems
Teoria e Prática em Sistemas de Recomendação
title Theory and Practice in Recommender Systems
spellingShingle Theory and Practice in Recommender Systems
Azambuja, Rogério Xavier de
title_short Theory and Practice in Recommender Systems
title_full Theory and Practice in Recommender Systems
title_fullStr Theory and Practice in Recommender Systems
title_full_unstemmed Theory and Practice in Recommender Systems
title_sort Theory and Practice in Recommender Systems
author Azambuja, Rogério Xavier de
author_facet Azambuja, Rogério Xavier de
Morais, A. Jorge
Filipe, Vítor
author_role author
author2 Morais, A. Jorge
Filipe, Vítor
author2_role author
author
dc.contributor.author.fl_str_mv Azambuja, Rogério Xavier de
Morais, A. Jorge
Filipe, Vítor
description In recent decades, artificial intelligence use has been frequent in the computational applications development. More recently, machine learning, especially through the use of deep learning, has driven growth and expanded the intelligent systems development for different domains. In the current scenario of technological growth, the recommender systems appear with increasing frequency through their different techniques for information filtering in large datasets. It is a challenge to provide adaptive recommendation to mitigate information overload in online environments. This article reviews previous works and addresses some of the theoretical-conceptual and theoretical-practical aspects that constitute the recommender systems, characterizing the use of deep neural network (DNN) to provide sequential recommendation supported by session-based recommendation.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.34627/rcc.v15i0.264
https://doi.org/10.34627/rcc.v15i0.264
url https://doi.org/10.34627/rcc.v15i0.264
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://journals.uab.pt/index.php/rcc/article/view/264
https://journals.uab.pt/index.php/rcc/article/view/264/219
dc.rights.driver.fl_str_mv Direitos de Autor (c) 2021 Universidade Aberta
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos de Autor (c) 2021 Universidade Aberta
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Aberta
publisher.none.fl_str_mv Universidade Aberta
dc.source.none.fl_str_mv Revista de Ciências da Computação; v. 16 (2021); 23-46
2182-1801
1646-6330
10.34627/rcc.v16i0
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130593808613376