Theory and Practice in Recommender Systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.34627/rcc.v15i0.264 |
Resumo: | In recent decades, artificial intelligence use has been frequent in the computational applications development. More recently, machine learning, especially through the use of deep learning, has driven growth and expanded the intelligent systems development for different domains. In the current scenario of technological growth, the recommender systems appear with increasing frequency through their different techniques for information filtering in large datasets. It is a challenge to provide adaptive recommendation to mitigate information overload in online environments. This article reviews previous works and addresses some of the theoretical-conceptual and theoretical-practical aspects that constitute the recommender systems, characterizing the use of deep neural network (DNN) to provide sequential recommendation supported by session-based recommendation. |
id |
RCAP_815584e03f2e1fd0edb48fb2960e6a41 |
---|---|
oai_identifier_str |
oai:ojs2.journals.uab.pt:article/264 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Theory and Practice in Recommender SystemsTeoria e Prática em Sistemas de RecomendaçãoIn recent decades, artificial intelligence use has been frequent in the computational applications development. More recently, machine learning, especially through the use of deep learning, has driven growth and expanded the intelligent systems development for different domains. In the current scenario of technological growth, the recommender systems appear with increasing frequency through their different techniques for information filtering in large datasets. It is a challenge to provide adaptive recommendation to mitigate information overload in online environments. This article reviews previous works and addresses some of the theoretical-conceptual and theoretical-practical aspects that constitute the recommender systems, characterizing the use of deep neural network (DNN) to provide sequential recommendation supported by session-based recommendation.Nas últimas décadas a utilização da inteligência artificial tem sido frequente no desenvolvimento de aplicações computacionais. Mais recentemente a aprendizagem automática, especialmente pelo uso da aprendizagem profunda (deep learning), tem impulsionado o crescimento e ampliado o desenvolvimento de sistemas inteligentes para diferentes domínios. No cenário atual de crescimento tecnológico estão a surgir com maior frequência os sistemas de recomendação (recommender systems) com diferentes técnicas para a filtragem de informações em grandes bases de dados. Um desafio é prover a recomendação adaptativa para mitigar a sobrecarga de informações em ambientes on-line. Este artigo revisa trabalhos anteriores e aborda alguns dos aspectos teórico-conceptuais e teórico-práticos que constituem os sistemas de recomendação, caracterizando o emprego de redes neuronais profundas (Deep Neural Network – DNN) para prover a recomendação sequencial apoiada pela recomendação baseada em sessão.Universidade Aberta2021-12-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.34627/rcc.v15i0.264https://doi.org/10.34627/rcc.v15i0.264Revista de Ciências da Computação; v. 16 (2021); 23-462182-18011646-633010.34627/rcc.v16i0reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPporhttps://journals.uab.pt/index.php/rcc/article/view/264https://journals.uab.pt/index.php/rcc/article/view/264/219Direitos de Autor (c) 2021 Universidade Abertahttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAzambuja, Rogério Xavier deMorais, A. JorgeFilipe, Vítor2022-12-23T06:30:14Zoai:ojs2.journals.uab.pt:article/264Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:14:02.383682Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Theory and Practice in Recommender Systems Teoria e Prática em Sistemas de Recomendação |
title |
Theory and Practice in Recommender Systems |
spellingShingle |
Theory and Practice in Recommender Systems Azambuja, Rogério Xavier de |
title_short |
Theory and Practice in Recommender Systems |
title_full |
Theory and Practice in Recommender Systems |
title_fullStr |
Theory and Practice in Recommender Systems |
title_full_unstemmed |
Theory and Practice in Recommender Systems |
title_sort |
Theory and Practice in Recommender Systems |
author |
Azambuja, Rogério Xavier de |
author_facet |
Azambuja, Rogério Xavier de Morais, A. Jorge Filipe, Vítor |
author_role |
author |
author2 |
Morais, A. Jorge Filipe, Vítor |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Azambuja, Rogério Xavier de Morais, A. Jorge Filipe, Vítor |
description |
In recent decades, artificial intelligence use has been frequent in the computational applications development. More recently, machine learning, especially through the use of deep learning, has driven growth and expanded the intelligent systems development for different domains. In the current scenario of technological growth, the recommender systems appear with increasing frequency through their different techniques for information filtering in large datasets. It is a challenge to provide adaptive recommendation to mitigate information overload in online environments. This article reviews previous works and addresses some of the theoretical-conceptual and theoretical-practical aspects that constitute the recommender systems, characterizing the use of deep neural network (DNN) to provide sequential recommendation supported by session-based recommendation. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.34627/rcc.v15i0.264 https://doi.org/10.34627/rcc.v15i0.264 |
url |
https://doi.org/10.34627/rcc.v15i0.264 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://journals.uab.pt/index.php/rcc/article/view/264 https://journals.uab.pt/index.php/rcc/article/view/264/219 |
dc.rights.driver.fl_str_mv |
Direitos de Autor (c) 2021 Universidade Aberta http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Direitos de Autor (c) 2021 Universidade Aberta http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Aberta |
publisher.none.fl_str_mv |
Universidade Aberta |
dc.source.none.fl_str_mv |
Revista de Ciências da Computação; v. 16 (2021); 23-46 2182-1801 1646-6330 10.34627/rcc.v16i0 reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799130593808613376 |