Development of antimicrobial starch-based bioplastics using aromatic plants by-products
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/33586 |
Resumo: | The excessive use of non-biodegradable single-use packaging and the limited recycling capacity of these materials result in the accumulation of large amounts of plastics in the environment, harming biodiversity in various ecosystems. To minimize this environmental issue, several biodegradable plastics have been developed, commonly called bioplastics. On the other hand, the packaging of food products with inert plastics, i.e., free of activity capable of promoting an increase in the shelf-life of foods, increases food waste. As an alternative, active materials have emerged, i.e., materials capable of interacting with the food or the atmosphere in which it is packaged, minimizing the occurrence of chemical reactions or the growth of microorganisms responsible for its deterioration. Active packaging is often developed either by using active polymers or by incorporating molecules capable of conferring functionality to inert materials, such as essential oils (EO). These compounds exist in natural matrices, such as aromatic plants. However, the economic/energy effort involved in their extraction, as well as the use of food products as sources of EO still compromise their use in the development of active bioplastics. In order to develop a sustainable strategy for the development of active bioplastics, in this work we studied the possibility of developing antimicrobial starch-based bioplastics by using the by-products of aromatic plants, namely dried stems and leaves of winter savory and lemongrass, often wasted in the industrial processing of aromatic plants. For this purpose, two approaches were followed: (1) extraction of EO from the by-products of winter savory and lemongrass for incorporation into a starch-based bioplastic formulation; (2) incorporation of the crushed and sieved by-products of winter savory and lemongrass into a starch based bioplastic formulation. In each of the approaches, the influences of EO or by-products on the moisture content, chromatic properties, wettability, mechanical properties and antimicrobial activity of the bioplastic formulation were evaluated. The incorporation of EO extracted from the by-products of winter savory or lemongrass slightly increased the moisture content of the bioplastic and didn’t significantly affect its chromatic, mechanical and wettability properties. Furthermore, EO inhibited the growth of Staphylococcus aureus when incorporated into the bioplastic. In turn, the incorporation of crushed winter savory by-products conferred a brown coloration to the bioplastic formulation, became them opaque, increased their moisture content and Young’s Modulus from 0.23 % and 53.8 MPa to 0.57 % and 92.6 MPa, respectively; and, decreased their hydrophobicity to 88 %. Regarding antimicrobial activity, this strategy showed higher efficacy in inhibiting the growth of S. aureus (85 %) than EO incorporation (37 %). This profile was similar for the bioplastic formulation/crushed lemongrass by-products, except for the antimicrobial activity that was lower (53 %) than that observed in the bioplastic formulation/crushed winter savory by-products. In summary, the by-products of winter savory and lemongrass were shown to be sources of molecules suitable for the development of antimicrobial bioplastics, whose physicochemical, mechanical and biological properties can be manipulated by incorporating these by-products merely ground, not requiring costly processes for the extraction of the antimicrobial compounds. Therefore, winter savory and lemongrass by-products are potential candidates for the expansion of antimicrobial bioplastics in the packaging sector, a strategy that will not only decrease the environmental footprint of this sector, but also contribute to the valorization of aromatic plant by-products. |
id |
RCAP_81a21877d5018361115b51732d4be9bb |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/33586 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Development of antimicrobial starch-based bioplastics using aromatic plants by-productsBioplasticsAgrifood by-productsAntimicrobial activitySustentabilityCircular economyThe excessive use of non-biodegradable single-use packaging and the limited recycling capacity of these materials result in the accumulation of large amounts of plastics in the environment, harming biodiversity in various ecosystems. To minimize this environmental issue, several biodegradable plastics have been developed, commonly called bioplastics. On the other hand, the packaging of food products with inert plastics, i.e., free of activity capable of promoting an increase in the shelf-life of foods, increases food waste. As an alternative, active materials have emerged, i.e., materials capable of interacting with the food or the atmosphere in which it is packaged, minimizing the occurrence of chemical reactions or the growth of microorganisms responsible for its deterioration. Active packaging is often developed either by using active polymers or by incorporating molecules capable of conferring functionality to inert materials, such as essential oils (EO). These compounds exist in natural matrices, such as aromatic plants. However, the economic/energy effort involved in their extraction, as well as the use of food products as sources of EO still compromise their use in the development of active bioplastics. In order to develop a sustainable strategy for the development of active bioplastics, in this work we studied the possibility of developing antimicrobial starch-based bioplastics by using the by-products of aromatic plants, namely dried stems and leaves of winter savory and lemongrass, often wasted in the industrial processing of aromatic plants. For this purpose, two approaches were followed: (1) extraction of EO from the by-products of winter savory and lemongrass for incorporation into a starch-based bioplastic formulation; (2) incorporation of the crushed and sieved by-products of winter savory and lemongrass into a starch based bioplastic formulation. In each of the approaches, the influences of EO or by-products on the moisture content, chromatic properties, wettability, mechanical properties and antimicrobial activity of the bioplastic formulation were evaluated. The incorporation of EO extracted from the by-products of winter savory or lemongrass slightly increased the moisture content of the bioplastic and didn’t significantly affect its chromatic, mechanical and wettability properties. Furthermore, EO inhibited the growth of Staphylococcus aureus when incorporated into the bioplastic. In turn, the incorporation of crushed winter savory by-products conferred a brown coloration to the bioplastic formulation, became them opaque, increased their moisture content and Young’s Modulus from 0.23 % and 53.8 MPa to 0.57 % and 92.6 MPa, respectively; and, decreased their hydrophobicity to 88 %. Regarding antimicrobial activity, this strategy showed higher efficacy in inhibiting the growth of S. aureus (85 %) than EO incorporation (37 %). This profile was similar for the bioplastic formulation/crushed lemongrass by-products, except for the antimicrobial activity that was lower (53 %) than that observed in the bioplastic formulation/crushed winter savory by-products. In summary, the by-products of winter savory and lemongrass were shown to be sources of molecules suitable for the development of antimicrobial bioplastics, whose physicochemical, mechanical and biological properties can be manipulated by incorporating these by-products merely ground, not requiring costly processes for the extraction of the antimicrobial compounds. Therefore, winter savory and lemongrass by-products are potential candidates for the expansion of antimicrobial bioplastics in the packaging sector, a strategy that will not only decrease the environmental footprint of this sector, but also contribute to the valorization of aromatic plant by-products.O uso excessivo de embalagens de utilização única não biodegradáveis e a limitada capacidade de reciclagem destes materiais originam a acumulação de grande quantidade de plásticos no meio ambiente, prejudicando a biodiversidade em vários ecossistemas. Para minimizar esta questão ambiental têm sido desenvolvidos vários plásticos biodegradáveis, comummente designados de bioplásticos. Por outro lado, o embalamento de produtos alimentares com plásticos inertes, ou seja, isentos de atividade capaz de promover o aumento do tempo-de-prateleira dos alimentos, aumenta o desperdício alimentar. Como alternativa têm surgido materiais ativos, ou seja, materiais com capacidade de interagir com o alimento ou a atmosfera em que este é embalado, minimizando a ocorrência de reações químicas ou o crescimento de microrganismos responsáveis pela sua deterioração. As embalagens ativas são frequentemente desenvolvidas ou pelo uso de polímeros ativos ou pela incorporação de moléculas capazes de conferirem funcionalidade a materiais inertes, tais como os óleos essenciais (EO). Estes compostos existem em matrizes naturais, como, por exemplo, as plantas aromáticas. Porém, o esforço económico/energético envolvido na sua extração, bem como o uso de produtos alimentares como fontes de EO ainda comprometem a sua utilização no desenvolvimento de bioplásticos ativos. Com o intuito de desenvolver uma estratégia sustentável para o desenvolvimento de bioplásticos ativos, neste trabalho estudou-se a possibilidade de desenvolver bioplásticos antimicrobianos à base de amido através da utilização dos subprodutos de ervas aromáticas, nomeadamente de caules e folhas secas de segurelha e erva-príncipe, frequentemente desperdiçados no processamento industrial das plantas aromáticas. Para o efeito foram seguidas duas abordagens: (1) extração dos EO dos subprodutos de segurelha e erva príncipe para incorporação numa formulação bioplástica à base de amido; (2) incorporação dos subprodutos de segurelha e erva-príncipe triturados e peneirados numa formulação bioplástica à base de amido. Em cada uma das abordagens foi avaliada a influências dos EO ou dos subprodutos no teor de humidade, propriedades cromáticas, molhabilidade, propriedades mecânicas e atividade antimicrobiana da formulação bioplástica. A incorporação de EO extraídos dos subprodutos de segurelha ou de erva-príncipe aumentou ligeiramente o teor de humidade do bioplástico e não afetou de forma significativa as suas propriedades cromáticas, mecânicas e molhabilidade. Além disso, os EO inibiram o crescimento de Staphylococcus aureus quando incorporados no bioplástico. Por sua vez, a incorporação dos subprodutos de segurelha triturados conferiu uma coloração castanha à formulação bioplástica, tornando-os opacos, aumentando o seu teor de humidade e rigidez de 0,23 % e 53,8 MPa para 0,57 % e 92,6 MPa, respetivamente; e, diminuiu a sua hidrofobicidade para 88 %. Em relação à atividade antimicrobiana, esta estratégia apresentou maior eficácia na inibição do crescimento de S. aureus (85 %) do que quando foram incorporados os EO (37 %). Este perfil foi semelhante para a formulação bioplástica/subprodutos de erva-príncipe triturados, exceto para a atividade antimicrobiana que foi inferior (53 %) à observada na formulação bioplástica/subprodutos da segurelha triturados. Em suma, os subprodutos da segurelha e da erva-príncipe mostraram-se fontes de moléculas adequadas ao desenvolvimento de bioplásticos antimicrobianos, cujas propriedades físico-químicas, mecânicas e biológicas podem ser manipuladas pela incorporação destes subprodutos simplesmente triturados, não requerendo processos dispendiosos para a extração dos compostos antimicrobianos. Portanto, os subprodutos de segurelha e de erva-príncipe são potenciais candidatos para a expansão de bioplásticos antimicrobianos no setor das embalagens, uma estratégia que não só diminuirá a pegada ambiental deste setor, mas também contribuirá para a valorização dos subprodutos de ervas aromáticas.2022-03-30T11:20:26Z2021-12-16T00:00:00Z2021-12-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/33586engCruz, João Filipe Silvainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:04:40Zoai:ria.ua.pt:10773/33586Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:00.137976Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Development of antimicrobial starch-based bioplastics using aromatic plants by-products |
title |
Development of antimicrobial starch-based bioplastics using aromatic plants by-products |
spellingShingle |
Development of antimicrobial starch-based bioplastics using aromatic plants by-products Cruz, João Filipe Silva Bioplastics Agrifood by-products Antimicrobial activity Sustentability Circular economy |
title_short |
Development of antimicrobial starch-based bioplastics using aromatic plants by-products |
title_full |
Development of antimicrobial starch-based bioplastics using aromatic plants by-products |
title_fullStr |
Development of antimicrobial starch-based bioplastics using aromatic plants by-products |
title_full_unstemmed |
Development of antimicrobial starch-based bioplastics using aromatic plants by-products |
title_sort |
Development of antimicrobial starch-based bioplastics using aromatic plants by-products |
author |
Cruz, João Filipe Silva |
author_facet |
Cruz, João Filipe Silva |
author_role |
author |
dc.contributor.author.fl_str_mv |
Cruz, João Filipe Silva |
dc.subject.por.fl_str_mv |
Bioplastics Agrifood by-products Antimicrobial activity Sustentability Circular economy |
topic |
Bioplastics Agrifood by-products Antimicrobial activity Sustentability Circular economy |
description |
The excessive use of non-biodegradable single-use packaging and the limited recycling capacity of these materials result in the accumulation of large amounts of plastics in the environment, harming biodiversity in various ecosystems. To minimize this environmental issue, several biodegradable plastics have been developed, commonly called bioplastics. On the other hand, the packaging of food products with inert plastics, i.e., free of activity capable of promoting an increase in the shelf-life of foods, increases food waste. As an alternative, active materials have emerged, i.e., materials capable of interacting with the food or the atmosphere in which it is packaged, minimizing the occurrence of chemical reactions or the growth of microorganisms responsible for its deterioration. Active packaging is often developed either by using active polymers or by incorporating molecules capable of conferring functionality to inert materials, such as essential oils (EO). These compounds exist in natural matrices, such as aromatic plants. However, the economic/energy effort involved in their extraction, as well as the use of food products as sources of EO still compromise their use in the development of active bioplastics. In order to develop a sustainable strategy for the development of active bioplastics, in this work we studied the possibility of developing antimicrobial starch-based bioplastics by using the by-products of aromatic plants, namely dried stems and leaves of winter savory and lemongrass, often wasted in the industrial processing of aromatic plants. For this purpose, two approaches were followed: (1) extraction of EO from the by-products of winter savory and lemongrass for incorporation into a starch-based bioplastic formulation; (2) incorporation of the crushed and sieved by-products of winter savory and lemongrass into a starch based bioplastic formulation. In each of the approaches, the influences of EO or by-products on the moisture content, chromatic properties, wettability, mechanical properties and antimicrobial activity of the bioplastic formulation were evaluated. The incorporation of EO extracted from the by-products of winter savory or lemongrass slightly increased the moisture content of the bioplastic and didn’t significantly affect its chromatic, mechanical and wettability properties. Furthermore, EO inhibited the growth of Staphylococcus aureus when incorporated into the bioplastic. In turn, the incorporation of crushed winter savory by-products conferred a brown coloration to the bioplastic formulation, became them opaque, increased their moisture content and Young’s Modulus from 0.23 % and 53.8 MPa to 0.57 % and 92.6 MPa, respectively; and, decreased their hydrophobicity to 88 %. Regarding antimicrobial activity, this strategy showed higher efficacy in inhibiting the growth of S. aureus (85 %) than EO incorporation (37 %). This profile was similar for the bioplastic formulation/crushed lemongrass by-products, except for the antimicrobial activity that was lower (53 %) than that observed in the bioplastic formulation/crushed winter savory by-products. In summary, the by-products of winter savory and lemongrass were shown to be sources of molecules suitable for the development of antimicrobial bioplastics, whose physicochemical, mechanical and biological properties can be manipulated by incorporating these by-products merely ground, not requiring costly processes for the extraction of the antimicrobial compounds. Therefore, winter savory and lemongrass by-products are potential candidates for the expansion of antimicrobial bioplastics in the packaging sector, a strategy that will not only decrease the environmental footprint of this sector, but also contribute to the valorization of aromatic plant by-products. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-16T00:00:00Z 2021-12-16 2022-03-30T11:20:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/33586 |
url |
http://hdl.handle.net/10773/33586 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137705040281600 |