Hunting for bubbles: A predictive model of New York city's real estate market
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/30055 |
Resumo: | What defines a housing bubble precisely? What forms the consensus on its principal triggering factors? Are these factors relevant to New York City? Housing bubbles are not novel occurrences, one was even associated with the major financial crisis of 2008. Understanding the causal factors behind a housing bubble and the unique dynamics characterizing the renowned New York City real estate market, are subjects frequently discussed by both the public and the media. The aim of this dissertation is to examine the primary economic factors typically linked to housing bubbles, drawing insights from research conducted in various geographical regions. This research involves gathering data to monitor these economic drivers in the US and New York City markets. Subsequently, classification models were constructed using these variables as inputs to identify periods of housing bubbles. The dissertation also includes an analysis of model performance and a comparison between different models to determine which feature set yields superior results. This study concluded that the most successful model configuration was achieved by using XGBoost with the feature list of Test 1. This configuration was tested both with and without feature selection, resulting in accuracy rates of 0.89 and 0.86, respectively. Notably, the features that played a significant role in our classification align with those highlighted by other researchers as crucial for housing bubble detection. Features such as the price-to-rent ratio, inflation, and interest rates demonstrated their applicability to New York City, substantiating findings from diverse geographical regions. |
id |
RCAP_81bfbec124aac1c84e0250b049ea28af |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/30055 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Hunting for bubbles: A predictive model of New York city's real estate marketHousing bubblesHousing marketMachine learningClassification modelsEconomic driversXGBoostBolhas imobiliáriasMercado imobiliárioModelos de classificaçãoImpulsionadores económicosWhat defines a housing bubble precisely? What forms the consensus on its principal triggering factors? Are these factors relevant to New York City? Housing bubbles are not novel occurrences, one was even associated with the major financial crisis of 2008. Understanding the causal factors behind a housing bubble and the unique dynamics characterizing the renowned New York City real estate market, are subjects frequently discussed by both the public and the media. The aim of this dissertation is to examine the primary economic factors typically linked to housing bubbles, drawing insights from research conducted in various geographical regions. This research involves gathering data to monitor these economic drivers in the US and New York City markets. Subsequently, classification models were constructed using these variables as inputs to identify periods of housing bubbles. The dissertation also includes an analysis of model performance and a comparison between different models to determine which feature set yields superior results. This study concluded that the most successful model configuration was achieved by using XGBoost with the feature list of Test 1. This configuration was tested both with and without feature selection, resulting in accuracy rates of 0.89 and 0.86, respectively. Notably, the features that played a significant role in our classification align with those highlighted by other researchers as crucial for housing bubble detection. Features such as the price-to-rent ratio, inflation, and interest rates demonstrated their applicability to New York City, substantiating findings from diverse geographical regions.O que define uma bolha imobiliária? Quais são os principais fatores que podem desencadear este fenómeno? Estes fatores são relevantes no contexto de Nova Iorque? As bolhas imobiliárias não são uma novidade, uma delas esteve inclusive ligada à conhecida crise financeira de 2008. Compreender os fatores causais por trás de uma bolha imobiliária, bem como as dinâmicas únicas que caracterizam o famoso mercado imobiliário da cidade de Nova Iorque, são assuntos frequentemente discutidos tanto pela população geral como pelos media. O objetivo desta dissertação é analisar os principais fatores económicos associados a bolhas imobiliárias, utilizando insights de pesquisas realizadas sobre o tópico em diversas regiões geográficas. Foram inicialmente coletados dados para monitorar estes indicadores económicos referentes aos EUA e, em particular, à cidade de Nova Iorque. Posteriormente, foram construídos modelos de classificação para identificar períodos de bolhas imobiliárias utilizando esses indicadores como input. O estudo concluiu que a configuração de modelo mais bem-sucedida foi alcançada através da utilização de XGBoost com a lista de features do Teste 1. Tendo o par, com e sem feature selection, alcançado taxas de accuracy de 0,89 e 0,86, respetivamente. As features com um papel significativo nestes modelos de classificação estão alinhadas com aquelas destacadas por outros autores como cruciais para a deteção de bolhas imobiliárias. O contributo para a performance dos modelos do rácio price-to-rent, inflação e taxas de juros demonstraram que estes indicadores são aplicáveis ao mercado imobiliário da cidade de Nova Iorque, corroborando com conclusões feitas por diversos autores para outros mercados.2023-12-19T15:02:50Z2023-12-07T00:00:00Z2023-12-072023-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/30055TID:203417542engSoares, Nuno Rodrigo Basílioinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-24T01:21:04Zoai:repositorio.iscte-iul.pt:10071/30055Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:55:49.383829Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Hunting for bubbles: A predictive model of New York city's real estate market |
title |
Hunting for bubbles: A predictive model of New York city's real estate market |
spellingShingle |
Hunting for bubbles: A predictive model of New York city's real estate market Soares, Nuno Rodrigo Basílio Housing bubbles Housing market Machine learning Classification models Economic drivers XGBoost Bolhas imobiliárias Mercado imobiliário Modelos de classificação Impulsionadores económicos |
title_short |
Hunting for bubbles: A predictive model of New York city's real estate market |
title_full |
Hunting for bubbles: A predictive model of New York city's real estate market |
title_fullStr |
Hunting for bubbles: A predictive model of New York city's real estate market |
title_full_unstemmed |
Hunting for bubbles: A predictive model of New York city's real estate market |
title_sort |
Hunting for bubbles: A predictive model of New York city's real estate market |
author |
Soares, Nuno Rodrigo Basílio |
author_facet |
Soares, Nuno Rodrigo Basílio |
author_role |
author |
dc.contributor.author.fl_str_mv |
Soares, Nuno Rodrigo Basílio |
dc.subject.por.fl_str_mv |
Housing bubbles Housing market Machine learning Classification models Economic drivers XGBoost Bolhas imobiliárias Mercado imobiliário Modelos de classificação Impulsionadores económicos |
topic |
Housing bubbles Housing market Machine learning Classification models Economic drivers XGBoost Bolhas imobiliárias Mercado imobiliário Modelos de classificação Impulsionadores económicos |
description |
What defines a housing bubble precisely? What forms the consensus on its principal triggering factors? Are these factors relevant to New York City? Housing bubbles are not novel occurrences, one was even associated with the major financial crisis of 2008. Understanding the causal factors behind a housing bubble and the unique dynamics characterizing the renowned New York City real estate market, are subjects frequently discussed by both the public and the media. The aim of this dissertation is to examine the primary economic factors typically linked to housing bubbles, drawing insights from research conducted in various geographical regions. This research involves gathering data to monitor these economic drivers in the US and New York City markets. Subsequently, classification models were constructed using these variables as inputs to identify periods of housing bubbles. The dissertation also includes an analysis of model performance and a comparison between different models to determine which feature set yields superior results. This study concluded that the most successful model configuration was achieved by using XGBoost with the feature list of Test 1. This configuration was tested both with and without feature selection, resulting in accuracy rates of 0.89 and 0.86, respectively. Notably, the features that played a significant role in our classification align with those highlighted by other researchers as crucial for housing bubble detection. Features such as the price-to-rent ratio, inflation, and interest rates demonstrated their applicability to New York City, substantiating findings from diverse geographical regions. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-19T15:02:50Z 2023-12-07T00:00:00Z 2023-12-07 2023-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/30055 TID:203417542 |
url |
http://hdl.handle.net/10071/30055 |
identifier_str_mv |
TID:203417542 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136444149661696 |