Numerical simulation of 3D fluid-structure interaction in floating wave energy converter devices

Detalhes bibliográficos
Autor(a) principal: Lopes, João Miguel Correia dos Santos
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/152867
Resumo: Global energy consumption and, consequently, energy related carbon dioxide (CO2) emissions have been increasing in the last few decades. Currently, the large majority of countries cover most of their energy needs with fossil fuels, contributing for CO2 emissions to the atmosphere, which have a strong impact on global warming. Recently, there has been growing concern about the significant increase in energy demands and environmental pollutants emissions by worldwide governments and organizations, resulting in the implementation of policies that promote the investment in non-polluting natural resources. The need to diversify the available renewable energy sources intensified the interest in ocean renewable energy. Research and development (R&D) of devices capable of extracting energy from the oceans (waves, wind, currents, tides) and transform it into electrical energy has, therefore, been one of the main focus of ocean engineering in recent years. Wave energy technology is not recent but, as opposed to wind and solar energy, it is still lacking a design convergence, contributing for a higher levelized cost of energy (LCOE), when compared to other sources. Wave energy technology has a strong potential of development and may have a fundamental contribution on achieving carbon neutrality and satisfying the increasing global energy demand. One of the main challenges of offshore renewable energies is to reduce costs, common to both wave and wind energy. Consequently, the incentive to couple semisubmersible platforms (SSPs), for the support of offshore wind turbines, and wave energy converters (WECs) emerges, allowing the reduction of installation costs. Although there are many advantages, the coupling of WECs with offshore wind turbines also introduces the influence of the interaction between both, resulting in a complex hydrodynamic system. Therefore, this work consists in studying a WEC which can be coupled with a floating SSP. The study is performed using the OpenFOAM software, augmenting its functionalities using olaFlow’s library for the generation and propagation of waves. In this context, the objectives of this thesis are: i) validation of the numerical model using experimental data from literature; ii) analysis of large amplitudes of motion effects of the device; iii) study of regular wave interaction with the wave energy hyperbaric converter (WEHC) device; iv) study of irregular wave interaction with the WEHC device; and v) study of the influence of the WEHC power take-off (PTO) damping characteristics. In the first part of this study the validation of wave generation and propagation is executed, comparing the wave parameters of simulated regular waves with analytical values. After the validation, a mesh convergence study is done. Afterwards, regular wave interaction with the WEC device is studied. First, a free heave and pitch decay tests are carried out to calculate the WEC’s natural period. Then, simulations without the PTO system are performed, enabling the characterization of the WEC’s behaviour for the different maritime conditions considered. The obtained results allow to conclude that the WEC is in resonance with the waves for frequencies around 0.20 Hz. It is also observed that both the heave amplitude and the pitch angle present small variations for shorter period waves. The influence of the pitch angle on the WEC’s heave amplitude is also studied. After, simulations with the PTO system are carried out, with results about the extracted power and optimal PTO’s linear damping coefficient being obtained. A power curve in function of the PTO’s linear damping coefficient, for each case considered, is presented. Finally, irregular wave interaction with the WEC device is studied. The influence of the PTO system when the WEC is under irregular waves is characterized.
id RCAP_81c581ae821af9ad4ff8bbe8057aaa61
oai_identifier_str oai:run.unl.pt:10362/152867
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Numerical simulation of 3D fluid-structure interaction in floating wave energy converter devicesFluid-structure interaction (FSI)OpenFOAMFloating WECsNumerical modellingDomínio/Área Científica::Engenharia e Tecnologia::Engenharia MecânicaGlobal energy consumption and, consequently, energy related carbon dioxide (CO2) emissions have been increasing in the last few decades. Currently, the large majority of countries cover most of their energy needs with fossil fuels, contributing for CO2 emissions to the atmosphere, which have a strong impact on global warming. Recently, there has been growing concern about the significant increase in energy demands and environmental pollutants emissions by worldwide governments and organizations, resulting in the implementation of policies that promote the investment in non-polluting natural resources. The need to diversify the available renewable energy sources intensified the interest in ocean renewable energy. Research and development (R&D) of devices capable of extracting energy from the oceans (waves, wind, currents, tides) and transform it into electrical energy has, therefore, been one of the main focus of ocean engineering in recent years. Wave energy technology is not recent but, as opposed to wind and solar energy, it is still lacking a design convergence, contributing for a higher levelized cost of energy (LCOE), when compared to other sources. Wave energy technology has a strong potential of development and may have a fundamental contribution on achieving carbon neutrality and satisfying the increasing global energy demand. One of the main challenges of offshore renewable energies is to reduce costs, common to both wave and wind energy. Consequently, the incentive to couple semisubmersible platforms (SSPs), for the support of offshore wind turbines, and wave energy converters (WECs) emerges, allowing the reduction of installation costs. Although there are many advantages, the coupling of WECs with offshore wind turbines also introduces the influence of the interaction between both, resulting in a complex hydrodynamic system. Therefore, this work consists in studying a WEC which can be coupled with a floating SSP. The study is performed using the OpenFOAM software, augmenting its functionalities using olaFlow’s library for the generation and propagation of waves. In this context, the objectives of this thesis are: i) validation of the numerical model using experimental data from literature; ii) analysis of large amplitudes of motion effects of the device; iii) study of regular wave interaction with the wave energy hyperbaric converter (WEHC) device; iv) study of irregular wave interaction with the WEHC device; and v) study of the influence of the WEHC power take-off (PTO) damping characteristics. In the first part of this study the validation of wave generation and propagation is executed, comparing the wave parameters of simulated regular waves with analytical values. After the validation, a mesh convergence study is done. Afterwards, regular wave interaction with the WEC device is studied. First, a free heave and pitch decay tests are carried out to calculate the WEC’s natural period. Then, simulations without the PTO system are performed, enabling the characterization of the WEC’s behaviour for the different maritime conditions considered. The obtained results allow to conclude that the WEC is in resonance with the waves for frequencies around 0.20 Hz. It is also observed that both the heave amplitude and the pitch angle present small variations for shorter period waves. The influence of the pitch angle on the WEC’s heave amplitude is also studied. After, simulations with the PTO system are carried out, with results about the extracted power and optimal PTO’s linear damping coefficient being obtained. A power curve in function of the PTO’s linear damping coefficient, for each case considered, is presented. Finally, irregular wave interaction with the WEC device is studied. The influence of the PTO system when the WEC is under irregular waves is characterized.O consumo global de energia e, consequentemente, as emissões de CO2 derivadas da sua produção, têm vindo a aumentar nas últimas décadas. Atualmente, a maioria dos países asseguram a maior parte das suas necessidades energéticas com recurso a combustíveis fósseis, contribuindo para as emissões de CO2 para a atmosfera, que têm um enorme impacto no aquecimento global. Recentemente, tem havido um crescente interesse sobre o aumento significativo das necessidades energéticas e emissão de gases poluentes, por parte de governos e organizações mundiais, resultando na implementação de políticas que promovem o investimento em recursos naturais não-poluentes. A necessidade de diversificar as fontes de energia renováveis disponíveis intensificou o interesse nas energias renováveis provenientes dos oceanos. A investigação e desenvolvimento de dispositivos capazes de extrair energia dos oceanos (ondas, vento, correntes, marés) e transformá-la em energia elétrica tem sido, assim, um dos principais temas de estudo da engenharia dos oceanos em anos recentes. A tecnologia da energia das ondas não é recente mas, ao contrário da energia solar e do vento, ainda não tem uma configuração comum estabelecida, contribuindo para um maior custo nivelado da energia, quando comparado a outras fontes. A tecnologia da energia das ondas tem um enorme potencial de desenvolvimento e pode ter um contributo fundamental para atingir a neutralidade carbónica e satisfazer o aumento das necessidades energéticas globais. Um dos principais desafios das energias renováveis offshore é reduzir custos, comum tanto à energia das ondas como do vento. Consequentemente, surge o incentivo de acoplar plataformas semi-submersíveis, para o suporte de turbinas eólicas offshore, e WECs, permitindo a redução dos custos de instalação. Apesar de existirem imensas vantagens, o acoplamento de WECs com turbinas eólicas offshore introduz a influência da interação entre ambos, resultando num sistema hidrodinâmico complexo. Desta forma, este trabalho consiste no estudo de um WEC que pode ser acoplado a uma SSP flutuante. O estudo é realizado com recurso ao software OpenFOAM, aumentando as suas funcionalidades utilizando a biblioteca olaFow para a geração e propagação das ondas. Assim, os objetivos desta dissertação são: i) validar o modelo numérico com recurso a dados experimentais da literatura; ii) analisar os efeitos das grandes amplitudes de movimento do dispositivo; iii) estudar a interação do WEC com ondas regulares; iv) estudar a interação do WEC com ondas irregulares; e v) estudar a influência das características de amortecimento do sistema de PTO. Na primeira parte deste estudo a validação da geração e propagação das ondas é realizada, comparando parâmetros das ondas regulares simuladas com valores analíticos. Após a validação é realizado um estudo de independência da malha. Em seguida, foi estudada a interação do WEC com ondas regulares. Primeiro, foram realizados testes de decaimento com afundamento e arfagem livres, de forma a calcular o período natural do WEC. Depois, simulações sem o sistema de PTO são realizadas, permitindo a caracterização do comportamento do WEC para as diferentes condições marítimas consideradas. Os resultados obtidos permitem concluir que o WEC entra em ressonância com as ondas para frequências por volta dos 0.20 Hz. Também é observado que tanto o afundamento como a arfagem do WEC apresentam pequenas variações para ondas de períodos mais curtos. A influência da arfagem nos movimentos de afundamento do WEC é também estudada. Depois, simulações com o sistema de PTO são realizadas, com resultados sobre a potência extraída e o valor ideal do coeficiente linear de amortecimento a serem obtidos. É também apresentada uma curva de potência, em função do coeficiente linear de amortecimento do PTO, para cada caso considerado. Por fim, foi estudada a interação do WEC com ondas irregulares. A influência do sistema de PTO, quando o WEC interage com ondas irregulares, é caracterizada.Brito, MoisésBernardo, FranciscoRUNLopes, João Miguel Correia dos Santos2023-05-17T15:29:18Z2022-122022-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/152867enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:35:25Zoai:run.unl.pt:10362/152867Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:55:05.920339Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Numerical simulation of 3D fluid-structure interaction in floating wave energy converter devices
title Numerical simulation of 3D fluid-structure interaction in floating wave energy converter devices
spellingShingle Numerical simulation of 3D fluid-structure interaction in floating wave energy converter devices
Lopes, João Miguel Correia dos Santos
Fluid-structure interaction (FSI)
OpenFOAM
Floating WECs
Numerical modelling
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Mecânica
title_short Numerical simulation of 3D fluid-structure interaction in floating wave energy converter devices
title_full Numerical simulation of 3D fluid-structure interaction in floating wave energy converter devices
title_fullStr Numerical simulation of 3D fluid-structure interaction in floating wave energy converter devices
title_full_unstemmed Numerical simulation of 3D fluid-structure interaction in floating wave energy converter devices
title_sort Numerical simulation of 3D fluid-structure interaction in floating wave energy converter devices
author Lopes, João Miguel Correia dos Santos
author_facet Lopes, João Miguel Correia dos Santos
author_role author
dc.contributor.none.fl_str_mv Brito, Moisés
Bernardo, Francisco
RUN
dc.contributor.author.fl_str_mv Lopes, João Miguel Correia dos Santos
dc.subject.por.fl_str_mv Fluid-structure interaction (FSI)
OpenFOAM
Floating WECs
Numerical modelling
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Mecânica
topic Fluid-structure interaction (FSI)
OpenFOAM
Floating WECs
Numerical modelling
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Mecânica
description Global energy consumption and, consequently, energy related carbon dioxide (CO2) emissions have been increasing in the last few decades. Currently, the large majority of countries cover most of their energy needs with fossil fuels, contributing for CO2 emissions to the atmosphere, which have a strong impact on global warming. Recently, there has been growing concern about the significant increase in energy demands and environmental pollutants emissions by worldwide governments and organizations, resulting in the implementation of policies that promote the investment in non-polluting natural resources. The need to diversify the available renewable energy sources intensified the interest in ocean renewable energy. Research and development (R&D) of devices capable of extracting energy from the oceans (waves, wind, currents, tides) and transform it into electrical energy has, therefore, been one of the main focus of ocean engineering in recent years. Wave energy technology is not recent but, as opposed to wind and solar energy, it is still lacking a design convergence, contributing for a higher levelized cost of energy (LCOE), when compared to other sources. Wave energy technology has a strong potential of development and may have a fundamental contribution on achieving carbon neutrality and satisfying the increasing global energy demand. One of the main challenges of offshore renewable energies is to reduce costs, common to both wave and wind energy. Consequently, the incentive to couple semisubmersible platforms (SSPs), for the support of offshore wind turbines, and wave energy converters (WECs) emerges, allowing the reduction of installation costs. Although there are many advantages, the coupling of WECs with offshore wind turbines also introduces the influence of the interaction between both, resulting in a complex hydrodynamic system. Therefore, this work consists in studying a WEC which can be coupled with a floating SSP. The study is performed using the OpenFOAM software, augmenting its functionalities using olaFlow’s library for the generation and propagation of waves. In this context, the objectives of this thesis are: i) validation of the numerical model using experimental data from literature; ii) analysis of large amplitudes of motion effects of the device; iii) study of regular wave interaction with the wave energy hyperbaric converter (WEHC) device; iv) study of irregular wave interaction with the WEHC device; and v) study of the influence of the WEHC power take-off (PTO) damping characteristics. In the first part of this study the validation of wave generation and propagation is executed, comparing the wave parameters of simulated regular waves with analytical values. After the validation, a mesh convergence study is done. Afterwards, regular wave interaction with the WEC device is studied. First, a free heave and pitch decay tests are carried out to calculate the WEC’s natural period. Then, simulations without the PTO system are performed, enabling the characterization of the WEC’s behaviour for the different maritime conditions considered. The obtained results allow to conclude that the WEC is in resonance with the waves for frequencies around 0.20 Hz. It is also observed that both the heave amplitude and the pitch angle present small variations for shorter period waves. The influence of the pitch angle on the WEC’s heave amplitude is also studied. After, simulations with the PTO system are carried out, with results about the extracted power and optimal PTO’s linear damping coefficient being obtained. A power curve in function of the PTO’s linear damping coefficient, for each case considered, is presented. Finally, irregular wave interaction with the WEC device is studied. The influence of the PTO system when the WEC is under irregular waves is characterized.
publishDate 2022
dc.date.none.fl_str_mv 2022-12
2022-12-01T00:00:00Z
2023-05-17T15:29:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/152867
url http://hdl.handle.net/10362/152867
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138138759626752