Likelihood function through the delta approximation in mixed SDE models

Detalhes bibliográficos
Autor(a) principal: Jamba, N.T.
Data de Publicação: 2022
Outros Autores: Jacinto, G., Filipe, P. A., Braumann, C. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/24492
Resumo: Stochastic differential equations (SDE) appropriately describe a variety of phenomena occurring in random environments, such as the growth dynamics of individual animals. Using appropriate weight transformations and a variant of the Ornstein–Uhlenbeck model, one obtains a general model for the evolution of cattle weight. The model parameters are ?, the average transformed weight at maturity, ?, a growth parameter, and ?, a measure of environmental fluctuations intensity. We briefly review our previous work on estimation and prediction issues for this model and some generalizations, considering fixed parameters. In order to incorporate individual characteristics of the animals, we now consider that the parameters ? and ? are Gaussian random variables varying from animal to animal, which results in SDE mixed models. We estimate parameters by maximum likelihood, but, since a closed-form expression for the likelihood function is usually not possible, we approximate it using our proposed delta approximation method. Using simulated data, we estimate the model parameters and compare them with existing methodologies, showing that the proposed method is a good alternative. It also overcomes the existing methodologies requirement of having all animals weighed at the same ages; thus, we apply it to real data, where such a requirement fails.
id RCAP_81ce1adc504957d92b827c86efca1db5
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/24492
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Likelihood function through the delta approximation in mixed SDE modelsDelta approximationMaximum likelihood estimation methodMixed modelsStochastic differential equationsStochastic differential equations (SDE) appropriately describe a variety of phenomena occurring in random environments, such as the growth dynamics of individual animals. Using appropriate weight transformations and a variant of the Ornstein–Uhlenbeck model, one obtains a general model for the evolution of cattle weight. The model parameters are ?, the average transformed weight at maturity, ?, a growth parameter, and ?, a measure of environmental fluctuations intensity. We briefly review our previous work on estimation and prediction issues for this model and some generalizations, considering fixed parameters. In order to incorporate individual characteristics of the animals, we now consider that the parameters ? and ? are Gaussian random variables varying from animal to animal, which results in SDE mixed models. We estimate parameters by maximum likelihood, but, since a closed-form expression for the likelihood function is usually not possible, we approximate it using our proposed delta approximation method. Using simulated data, we estimate the model parameters and compare them with existing methodologies, showing that the proposed method is a good alternative. It also overcomes the existing methodologies requirement of having all animals weighed at the same ages; thus, we apply it to real data, where such a requirement fails.MDPI2022-02-11T11:54:33Z2022-01-01T00:00:00Z20222022-02-11T11:52:49Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/24492eng2227-739010.3390/math10030385Jamba, N.T.Jacinto, G.Filipe, P. A.Braumann, C. A.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:36:10Zoai:repositorio.iscte-iul.pt:10071/24492Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:16:24.084177Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Likelihood function through the delta approximation in mixed SDE models
title Likelihood function through the delta approximation in mixed SDE models
spellingShingle Likelihood function through the delta approximation in mixed SDE models
Jamba, N.T.
Delta approximation
Maximum likelihood estimation method
Mixed models
Stochastic differential equations
title_short Likelihood function through the delta approximation in mixed SDE models
title_full Likelihood function through the delta approximation in mixed SDE models
title_fullStr Likelihood function through the delta approximation in mixed SDE models
title_full_unstemmed Likelihood function through the delta approximation in mixed SDE models
title_sort Likelihood function through the delta approximation in mixed SDE models
author Jamba, N.T.
author_facet Jamba, N.T.
Jacinto, G.
Filipe, P. A.
Braumann, C. A.
author_role author
author2 Jacinto, G.
Filipe, P. A.
Braumann, C. A.
author2_role author
author
author
dc.contributor.author.fl_str_mv Jamba, N.T.
Jacinto, G.
Filipe, P. A.
Braumann, C. A.
dc.subject.por.fl_str_mv Delta approximation
Maximum likelihood estimation method
Mixed models
Stochastic differential equations
topic Delta approximation
Maximum likelihood estimation method
Mixed models
Stochastic differential equations
description Stochastic differential equations (SDE) appropriately describe a variety of phenomena occurring in random environments, such as the growth dynamics of individual animals. Using appropriate weight transformations and a variant of the Ornstein–Uhlenbeck model, one obtains a general model for the evolution of cattle weight. The model parameters are ?, the average transformed weight at maturity, ?, a growth parameter, and ?, a measure of environmental fluctuations intensity. We briefly review our previous work on estimation and prediction issues for this model and some generalizations, considering fixed parameters. In order to incorporate individual characteristics of the animals, we now consider that the parameters ? and ? are Gaussian random variables varying from animal to animal, which results in SDE mixed models. We estimate parameters by maximum likelihood, but, since a closed-form expression for the likelihood function is usually not possible, we approximate it using our proposed delta approximation method. Using simulated data, we estimate the model parameters and compare them with existing methodologies, showing that the proposed method is a good alternative. It also overcomes the existing methodologies requirement of having all animals weighed at the same ages; thus, we apply it to real data, where such a requirement fails.
publishDate 2022
dc.date.none.fl_str_mv 2022-02-11T11:54:33Z
2022-01-01T00:00:00Z
2022
2022-02-11T11:52:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/24492
url http://hdl.handle.net/10071/24492
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2227-7390
10.3390/math10030385
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134722414084096